The Full Wiki

List of oxidation states of the elements: Wikis

Advertisements
  

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Encyclopedia

From Wikipedia, the free encyclopedia

This is a list of all the known oxidation states of the chemical elements, excluding nonintegral values. The more common oxidation states are in bold. This table is based on Greenwood's,[1] with all additions noted. Oxidation state 0, which is found for all elements, is implied by the column with the element's symbol. The format of the table, based on one devised by Mendeleev in 1889, highlights some of the periodic trends.

−1 H +1
He
−1 Li +1
Be +2
B +1 +2 +3
−4 −3 −2 −1 C +1 +2 +3 +4
−3 −2 −1 N +1 +2 +3 +4 +5
−2 −1 O +1 +2
−1 F
Ne
−1 Na +1
Mg +1 +2 [2]
Al +1 +3
−4 −3 −2 −1 Si +1 +2 +3 +4
−3 −2 −1 P +1 +2 +3 +4 +5
−2 −1 S +1 +2 +3 +4 +5 +6
−1 Cl +1 +2 +3 +4 +5 +6 +7
Ar
K +1
Ca +2
Sc +1 +2 +3
−1 Ti +2 +3 +4
−1 V +1 +2 +3 +4 +5
−2 −1 Cr +1 +2 +3 +4 +5 +6
−3 −2 −1 Mn +1 +2 +3 +4 +5 +6 +7
−2 −1 Fe +1 +2 +3 +4 +5 +6
−1 Co +1 +2 +3 +4 +5
−1 Ni +1 +2 +3 +4
Cu +1 +2 +3 +4
Zn +2
Ga +1 +2 +3
−4 Ge +1 +2 +3 +4
−3 As +2 +3 +5
−2 Se +2 +4 +6
−1 Br +1 +3 +4 +5 +7
Kr +2
Rb +1
Sr +2
Y +1 +2 +3 [3][4]
Zr +1 +2 +3 +4
−1 Nb +2 +3 +4 +5
−2 −1 Mo +1 +2 +3 +4 +5 +6
−3 −1 Tc +1 +2 +3 +4 +5 +6 +7
−2 Ru +1 +2 +3 +4 +5 +6 +7 +8
−1 Rh +1 +2 +3 +4 +5 +6
Pd +2 +4
Ag +1 +2 +3
Cd +2
In +1 +2 +3
−4 Sn +2 +4
−3 Sb +3 +5
−2 Te +2 +4 +5 +6
−1 I +1 +3 +5 +7
Xe +2 +4 +6 +8
Cs +1
Ba +2
La +2 +3
Ce +2 +3 +4
Pr +2 +3 +4
Nd +2 +3
Pm +3
Sm +2 +3
Eu +2 +3
Gd +1 +2 +3
Tb +1 +3 +4
Dy +2 +3
Ho +3
Er +3
Tm +2 +3
Yb +2 +3
Lu +3
Hf +2 +3 +4
−1 Ta +2 +3 +4 +5
−2 −1 W +1 +2 +3 +4 +5 +6
−3 −1 Re +1 +2 +3 +4 +5 +6 +7
−2 -1 Os +1 +2 +3 +4 +5 +6 +7 +8
−3 −1 Ir +1 +2 +3 +4 +5 +6 [5]
Pt +2 +4 +5 +6
−1 Au +1 +2 +3 +5
Hg +1 +2 +4 [6]
Tl +1 +3
−4 Pb +2 +4
−3 Bi +3 +5
−2 Po +2 +4 +6
−1 At +1 +3 +5 +7
Rn +2 [7]
Fr +1
Ra +2
Ac +3
Th +2 +3 +4
Pa +3 +4 +5
U +3 +4 +5 +6
Np +3 +4 +5 +6 +7
Pu +3 +4 +5 +6 +7
Am +2 +3 +4 +5 +6
Cm +3 +4
Bk +3 +4
Cf +2 +3 +4
Es +2 +3
Fm +2 +3
Md +2 +3
No +2 +3
Lr +3
Rf +4

A figure with a similar format (shown below) was used by Irving Langmuir in 1919 in one of the early papers about the octet rule.[8] The periodicity of the oxidation states was one of the pieces of evidence that lead Langmuir to adopt the rule.

Langmuir valence.png

References and notes

  1. ^ Greenwood, Norman N.; Earnshaw, A. (1997), Chemistry of the Elements (2nd ed.), Oxford: Butterworth-Heinemann, ISBN 0-7506-3365-4  , p. 28.
  2. ^ Low-valent magnesium compounds with Mg(I) have been obtained using bulky ligands; see Green, S. P.; Jones C.; Stasch A. (December 2007). "Stable Magnesium(I) Compounds with Mg-Mg Bonds". Science 318 (5857): 1754–1757. doi:10.1126/science.1150856.  
  3. ^ "Yttrium: yttrium(II) hydride compound data". WebElements.com. http://www.webelements.com/webelements/compounds/text/Y/H2Y1-13598351.html. Retrieved 2007-12-10.  
  4. ^ "Yttrium: yttrium(I) bromide compound data". OpenMOPAC.net. http://www.openmopac.net/data_normal/yttrium(i)%20bromide_jmol.html. Retrieved 2007-12-10.  
  5. ^ Ir(−3) has been observed in Ir(CO)33−; see Greenwood, Norman N.; Earnshaw, A. (1997), Chemistry of the Elements (2nd ed.), Oxford: Butterworth-Heinemann, ISBN 0-7506-3365-4   p.1117
  6. ^ Hg4+ has been observed in mercury tetrafluoride; see Xuefang Wang; Lester Andrews; Sebastian Riedel; and Martin Kaupp (2007). "Mercury Is a Transition Metal: The First Experimental Evidence for HgF4.". Angew. Chem. Int. Ed. 46 (44): 8371–8375. doi:10.1002/anie.200703710.  .
  7. ^ Rn2+ has been observed in radon difluoride; see Stein, L. (1970). "Ionic Radon Solution". Science 168: 362. doi:10.1126/science.168.3929.362.   and Kenneth S. Pitzer (1975). "Fluorides of radon and element 118". J. Chem. Soc., Chem. Commun.,: 760b - 761. doi:10.1039/C3975000760b.  
  8. ^ Irving Langmuir. The arrangement of electrons in atoms and molecules. J. Am. Chem. Soc. 1919, 41, 868-934. doi:10.1021/ja02227a002
Advertisements

Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message