The Full Wiki

List of sequenced plastomes: Wikis

Advertisements

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Encyclopedia

From Wikipedia, the free encyclopedia

A plastome is the genome of a plastid (a type of organelle found in plants and in a variety of protoctists).

Contents

Plants

Advertisements

Bryophytes s.l.

Sequenced Plastomes
Species variety Base Pairs Genes Reference Notes
Aneura mirabilis 108,007 [1][2] parasitic liverwort; plastome contains many pseudogenes
Anthoceros formosae 161,162 122 [3] hornwort; extensive RNA editing of plastome
Marchantia polymorpha 121,024 [4] liverwort
Physcomitrella patens 122,890 118 [5] moss

Ferns and allies

Sequenced Plastomes
Species variety Base Pairs Genes Reference
Adiantum capillus-veneris 150,568
Angiopteris evecta
Huperzia lucidula 154,373
Psilotum nudum 138,829
Selaginella uncinata 138,829

Gymnosperms

Sequenced Plastomes
Species variety Base Pairs Genes Reference
Cryptomeria japonica 131,810 114 [6]
Cycas micronesica
Cycas taitungensis [7]
Gingko biloba [8]
Pinus koraiensis 116,866
Pinus thunbergii 119,707 [9]
Podocarpus macrophyllus
Welwitschia mirabilis 119,726 101 [10]

Flowering plants

Sequenced Plastomes
Species variety Base Pairs Genes Reference
Acorus americanus
Acorus calamus 153,821
Aethionema cordifolium
Aethionema grandiflorum
Agrostis stolonifera
Amborella trichopoda 162,686 [11]
Anethum graveolens
Arabidopsis thaliana 154,478
Arabis hirsuta
Atropa belladonna 156,687
Bambusa oldhamii 139,350
Barbarea verna
Brachypodium distachyon
Brassica rapa
Buxus microphylla [12]
Calycanthus floridus var. glaucus 153,337
Capsella bursa-pastoris
Carica papaya
Ceratophyllum demersum [13]
Chloranthus spicatus [12]
Citrus sinensis 155,189
Coffea arabica
Crucihimalya wallichii
Cucumis sativus 155,293
Cuscuta exaltata
Cuscuta gronovii [14]
Cuscuta obtusiflora
Cuscuta reflexa
Daucus carota 155,911
Dendrocalamus latiflorus 139,365
Dioscorea elephantipes [12]
Draba nemorosa
Drimys granadensis 160,604
Elaeis oleifera
Epifagus virginiana 70,028 42 [15]
Eucalyptus globulus subsp. globulus 160,286
Fagopyrum esculentum ssp. ancestrale 159,599 [16]
Glycine max 152,218
Gossypium barbadense 160,317 114 [17]
Gossypium hirsutum 160,301
Guizotia abyssinica
Hedyosmum unpublished
Helianthus annuus 151,104
Hordeum vulgare subsp. vulgare
Hydatella unpublished
Illicium oligandrum [12]
Ipomoea purpurea
Jasminum nudiflorum 165,121
Lactuca sativa 152,765
Lemna minor
Lepidium virginicum
Liriodendron tulipifera 159,866
Lobularia maritima
Lolium perenne
Lotus corniculatus
Lotus japonicus 150,519
Lycopersicon esculentum 155,460
Manihot esculenta
Medicago truncatulata 124,033
Megaleranthis saniculifolia 159,924
Morus indica 156,599
Musa acuminata
Nandina domestica
Nasturtium officinale
Nicotiana sylvestris 155,941
Nicotiana tabacum 155,943
Nicotiana tomentosiformis 155,745
Nuphar advena 160,866 117 [18]
Nymphaea alba 159,930
Oenothera argillicola strain douthat 1 165,055 113 [19]
Oenothera biennis strain suaveolens Grado 164,807 113 [19]
Oenothera elata subsp. hookeri strain johansen 165,728 113 [19]
Oenothera glazioviana strain rr-lamarckiana Sweden 165,225 113 [19]
Oenothera parviflora strain atrovirens Standard 163,365 113 [19]
Olimarabidopsis pumila
Oryza nivara 134,494
Oryza sativa indica 93-11 134,496
Oryza sativa japonica Nipponbare 134,551
Oryza sativa japonica PA64S 134,551
Panax ginseng 156,318
Passiflora biflora
Pelargonium × hortorum
Phalaenopsis aphrodite subsp. formosana 148,964
Phaseolus vulgaris 'Negro Jamapa' 150,285 [20]
Piper cenocladum 160,624
Platanus occidentalis 161,791
Populus alba 156,505
Populus trichocarpa
Ranunculus macranthus 155,158 117 [18]
Saccharum SP-80-3280 141,182
Saccharum officinarum 141,182
Scaevola aemula
Solanum bulbocastanum 155,371
Solanum tuberosum 155,298
Solanum lysopersicum
Sorghum bicolor
Spinacia oleracea 150,725
Trachelium caeruleum
Triticum aestivum 134,545
Typha latifolia [8]
Vitis vinifera 160,928
Yucca schidigera [8]
Zea mays 140,384

Green Algae

Sequenced Plastomes
Species variety Base Pairs Genes Reference
Chaetosphaeridium globosum 131,183 124 [21]
Chara vulgaris
Chlamydomonas reinhardtii 203,395 99
Chlorella vulgaris 150,613 209 [22]
Chlorokybus atmophyticus 201,763 70 [23]
Emiliania huxleyi 105,309 150
Helicosporidium 37,454 54 [24]
Leptosira terrestris 195,081 117 [25]
Mesostigma viride 42,424
Monomastix 114,528 94 [26]
Nephroselmis olivacea 200,799 127 [27]
Oedogonium cardiacum 196,547 103 [28]
Oltmannsiellopsis viridis 151,933 105 [29]
Ostreococcus tauri 71,666 86 [30]
Pseudendoclonium akinetum 195,867 105 [31]
Pycnococcus provasolii 80,211 98 [26]
Pyramimonas parkeae 101,605 110 [26]
Scenedesmus obliquus 161,452 96 [32]
Staurastrum punctulatum [33]
Stigeoclonium helveticum 223,902 97 [34]
Volvox carteri 420,650 91 [35]
Zygnema circumcarinatum

Red Algae

Sequenced Plastomes
Species variety Base Pairs Genes Reference
Cyanidioschyzon merolae 149,987 243 [36]
Cyanidium caldarium RK1 [37]
Gracilaria tenuistipitata var. liui 183,883 238 [38]
Porphyra purpurea
Porphyra yezoensis
Thalassosira pseudonana 129kb

Glaucophytes

Sequenced Plastomes
Species variety Base Pairs Genes Reference
Cyanophora paradoxa

Meta-algae and Apicomplexans

Meta-algae are organisms with photosynthetic organelles of secondary or tertiary endosymbiotic origin, and their close non-photosynthetic, plastid-bearing, relatives. Apicomplexans are a secondarily non-photosynthetic group of chromalveoates which retain a reduced plastid organelle.

photosynthetic Chromalveolates

Sequenced Plastomes
Species variety Base Pairs Genes Reference
Guillardia theta 121,524 167 [39]
Heterosigma akashiwo
Odontella sinensis 119.7kb 175
Phaeodactylum tricornutum
Rhodomonas salina

Chlorarachniophytes

Sequenced Plastomes
Species variety Base Pairs Genes Reference
Bigelowiella natans 69,166 87 [40]

Euglenophytes

Euglenophyte plastid genomes are not organised into a single circular DNA molecule like other plastid genomes, but into an array of mini-circles.

Sequenced Plastomes
Species variety Base Pairs Genes Reference
Astasia longa 73.2kb 84
Euglena gracilis 143.2kb 128 [41]

Apicomplexans

Sequenced Plastomes
Species variety Base Pairs Genes Reference
Eimeria tenella Penn State 34.8kb 65 [42]
Plasmodium falciparum 34.7kb 68
Theileria parva Mugaga 39.6kb 71
Toxoplasma gondii RH 35.0kb 65

Nucleomorph Genomes

In some photosynthetic organisms that ability was acquired via symbiosis with a unicellular green alga (chlorophyte) or red alga (rhodophyte). In some such cases not only does the chloroplast of the former unicellular alga retain its own genome, but a remnant of the alga is also retained. When this retains a nucleus and a nuclear genome it is termed a nucleomorph.

Sequenced Nucleomorph Genomes
Species variety Base Pairs Genes Reference
Bigelowiella natans
Guillardia theta 551,264
Hemiselmis andersenii

Cyanelle Genomes

The unicellular eukaryote Paulinella chromatophora possesses an organelle (the cyanelle) which represents an independent case of the acquisition of photosynthetis by cyanobacterial endosymbiosis. (Note: the term cyanelle is also applied to the plastids of glaucophytes.)

Sequenced Cyanelle Genomes
Species variety Base Pairs Genes Reference
Paulinella chromatophora 1.02Mb 867 [43]

See also

External links

References

  1. ^ Wickett NJ, Zhang Y, Hansen SK, et al. (February 2008). "Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort Aneura mirabilis". Mol. Biol. Evol. 25 (2): 393–401. doi:10.1093/molbev/msm267. PMID 18056074. http://mbe.oxfordjournals.org/cgi/content/abstract/msm267v1.  
  2. ^ Plastid genome evolution of the non-photosynthetic liverwort Aneura mirabilis (Malmb.) Wickett & Goffinet (Aneuraceae)
  3. ^ Masanori Kugita; Akira Kaneko, Yuhei Yamamoto, Yuko Takeya, Tohoru Matsumoto and Koichi Yoshinaga (1986). "The complete nucleotide sequence of the hornwort (Anthoceros formosae) chloroplast genome: insight into the earliest land plants". Nucleic Acids Research 31 (2): 572–4. http://nar.oxfordjournals.org/cgi/content/abstract/31/2/716.  
  4. ^ K Ohyama; Fukuzawa,H., Kohchi,T., Shirai,H., Sano,T., Sano,S., Umezono,K., Shiki,Y., Takeuchi,M., Chang,Z. et al. (2003). "Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA.". Nature 322: 716–721.  
  5. ^ Chika Sugiura; Yuki Kobayashi, Setsuyuki Aoki1, Chieko Sugita and Mamoru Sugita (2003). "Complete chloroplast DNA sequence of the moss Physcomitrella patens: evidence for the loss and relocation of rpoA from the chloroplast to the nucleus". Nucleic Acids Research 31 (18): 5324–5331. doi:10.1093/nar/gkg726. http://nar.oxfordjournals.org/cgi/content/abstract/31/18/5324.  
  6. ^ Hirao T, Watanabe A, Kurita M, Kondo T, Takata K (2008). "Complete nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species". BMC Plant Biol. 8: 70. doi:10.1186/1471-2229-8-70. PMID 18570682.  
  7. ^ CS Wu; Wang YN, Liu SM, Chaw SM (2007). "Chloroplast Genome (cpDNA) of Cycas taitungensis and 56 cp protein-coding genes of Gnetum parvifolium: insights into cpDNA evolution and phylogeny of extant seed plants". Mol Biol Evol 24: 1366–1379. doi:10.1093/molbev/msm059.  
  8. ^ a b c J Leebens-Mack; Raubeson LA, Cui L, Kuehl J, Fourcade M, Chumley T, Boore JL, Jansen RK, dePamphilis CW (2005). "Identifying the basal angiosperms in chloroplast genome phylogenies: sampling one's way out of the Felsenstein zone". Mol Biol Evol 22: 1948–1963. doi:10.1093/molbev/msi191.  
  9. ^ T Wakasugi; Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M (1998). "Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii.". PNAS 91: 9794–9798. doi:10.1073/pnas.91.21.9794.  
  10. ^ Skip R McCoy; Jennifer V Kuehl, Jeffrey L Boore and Linda A Raubeson (2008). "The complete plastid genome sequence of Welwitschia mirabilis: an unusually compact plastome with accelerated divergence rates.". BMC Evolutionary Biology 8: 130. doi:10.1186/1471-2148-8-130.  
  11. ^ W Goremykin; Hirsch-Ernst KI, Wolfl S, Hellwig FH (2003). "Analysis of the Amborella trichopoda chloroplast genome sequence suggests that Amborella is not a basal angiosperm.". Mol Bio Evol 20: 1445–1454.  
  12. ^ a b c d DR Hansen; Dastidar SG, Cai Z, Penaflor C, Kuehl JV, Boore JL, Jansen RK (2008). "Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early diverging angiosperms: Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae).". Molecular Phylogenetics and Evolution 45 (2): 547–563. doi:10.1016/j.ympev.2007.06.004.  
  13. ^ Michael J. Moore; Charles D. Bell, Pamela S. Soltis, and Douglas E. Soltis (2007). "Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms". PNAS 104 (49): 19363–19368. doi:10.1073/pnas.0708072104. http://www.pnas.org/content/104/49/19363.abstract.  
  14. ^ Funk HT, Berg S, Krupinska K, Maier UG, Krause K (2007). "Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii". BMC Plant Biol. 7: 45. doi:10.1186/1471-2229-7-45. PMID 17714582.  
  15. ^ Wolfe KH, Morden CW, Palmer JD (November 1992). "Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant". Proc. Natl. Acad. Sci. U.S.A. 89 (22): 10648–52. doi:10.1073/pnas.89.22.10648. PMID 1332054. PMC 50398. http://www.pnas.org/content/89/22/10648.abstract.  
  16. ^ Maria D Logacheva; Tahir H Samigullin, Amit Dhingra and Aleksey A Penin (2008). "Comparative chloroplast genomics and phylogenetics of Fagopyrum esculentum ssp. ancestrale – A wild ancestor of cultivated buckwheat.". BMC Plant Biology 8: 59. doi:10.1186/1471-2229-8-59. http://www.biomedcentral.com/1471-2229/8/59.  
  17. ^ Rashid Ismael Hag Ibrahim; Jun-Ichi Azuma and Masahiro Sakamoto (2006). "Complete Nucleotide Sequence of the Cotton (Gossypium barbadense L.) Chloroplast Genome with a Comparative Analysis of Sequences among 9 Dicot Plants". Genes & Genetic Systems 81: 311–321. doi:10.1266/ggs.81.311. http://www.jstage.jst.go.jp/article/ggs/81/5/81_311/_article.  
  18. ^ a b Linda A Raubeson; Rhiannon Peery, Timothy W Chumley, Chris Dziubek, H Matthew Fourcade, Jeffrey L Boore and Robert K Jansen (2007). "Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus.". BMC Genomics 8: 174. doi:10.1186/1471-2164-8-174.  
  19. ^ a b c d e Stephan Greiner; Xi Wang, Uwe Rauwolf, Martina V. Silber, Klaus Mayer, Jörg Meurer, Georg Haberer and Reinhold G. Herrmann (2008). "The complete nucleotide sequences of the five genetically distinct plastid genomes of Oenothera, subsection Oenothera: I. Sequence evaluation and plastome evolutiony.". Nucleic Acids Research 36 (7): 2366–78. doi:10.1093/nar/gkn081. http://nar.oxfordjournals.org/cgi/content/abstract/36/7/2366.  
  20. ^ Xianwu Guo; Santiago Castillo-Ramírez, Víctor González,1 Patricia Bustos, José Luís Fernández-Vázquez, Rosa Isela Santamaría,1 Jesús Arellano,2 Miguel A Cevallos, and Guillermo Dávila (2007). "Rapid evolutionary change of common bean (Phaseolus vulgaris L) plastome, and the genomic diversification of legume chloroplasts". BMC Genonomics 8: 288. doi:10.1186/1471-2164-8-228. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1940014&rendertype=abstract.  
  21. ^ Turmel M, Otis C, Lemieux C (August 2002). "The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants". Proc. Natl. Acad. Sci. U.S.A. 99 (17): 11275–80. doi:10.1073/pnas.162203299. PMID 12161560.  
  22. ^ Wakasugi T, Nagai T, Kapoor M, et al. (May 1997). "Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: the existence of genes possibly involved in chloroplast division". Proc. Natl. Acad. Sci. U.S.A. 94 (11): 5967–72. doi:10.1073/pnas.94.11.5967. PMID 9159184. PMC 20890. http://www.pnas.org/content/94/11/5967.abstract.  
  23. ^ Turmel M, Otis C, Lemieux C (2007). "An unexpectedly large and loosely packed mitochondrial genome in the charophycean green alga Chlorokybus atmophyticus". BMC Genomics 8: 137. doi:10.1186/1471-2164-8-137. PMID 17537252. PMC 1894977. http://www.biomedcentral.com/1471-2164/8/137.  
  24. ^ de Koning AP, Keeling PJ (2006). "The complete plastid genome sequence of the parasitic green alga Helicosporidium sp. is highly reduced and structured". BMC Biol. 4: 12. doi:10.1186/1741-7007-4-12. PMID 16630350. PMC 1463013. http://www.biomedcentral.com/1741-7007/4/12.  
  25. ^ de Cambiaire JC, Otis C, Turmel M, Lemieux C (2007). "The chloroplast genome sequence of the green alga Leptosira terrestris: multiple losses of the inverted repeat and extensive genome rearrangements within the Trebouxiophyceae". BMC Genomics 8: 213. doi:10.1186/1471-2164-8-213. PMID 17610731.  
  26. ^ a b c Monique Turmel, Marie-Christine Gagnon*, Charley J. O'Kelly, Christian Otis* and Claude Lemieux (March 2009). "The Chloroplast Genomes of the Green Algae Pyramimonas, Monomastix, and Pycnococcus Shed New light on the Evolutionary History of Prasinophytes and the Origin of the Secondary Chloroplasts of Euglenids". Molecular Biology and Evolution 26 (3): 631–648. doi:10.1093/molbev/msn285. http://mbe.oxfordjournals.org/cgi/content/abstract/26/3/631.  
  27. ^ Turmel M, Otis C, Lemieux C (August 1999). "The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea: insights into the architecture of ancestral chloroplast genomes". Proc. Natl. Acad. Sci. U.S.A. 96 (18): 10248–53. doi:10.1073/pnas.96.18.10248. PMID 10468594. PMC 17874. http://www.pnas.org/content/96/18/10248.abstract.  
  28. ^ Brouard JS, Otis C, Lemieux C, Turmel M (2008). "Chloroplast DNA sequence of the green alga Oedogonium cardiacum (Chlorophyceae): unique genome architecture, derived characters shared with the Chaetophorales and novel genes acquired through horizontal transfer". BMC Genomics 9: 290. doi:10.1186/1471-2164-9-290. PMID 18558012.  
  29. ^ Pombert JF, Lemieux C, Turmel M (2006). "The complete chloroplast DNA sequence of the green alga Oltmannsiellopsis viridis reveals a distinctive quadripartite architecture in the chloroplast genome of early diverging ulvophytes". BMC Biol. 4: 3. doi:10.1186/1741-7007-4-3. PMID 16472375. PMC 1402334. http://www.biomedcentral.com/1741-7007/4/3/abstract.  
  30. ^ Robbens S, Derelle E, Ferraz C, Wuyts J, Moreau H, Van de Peer Y (April 2007). "The complete chloroplast and mitochondrial DNA sequence of Ostreococcus tauri: organelle genomes of the smallest eukaryote are examples of compaction". Mol. Biol. Evol. 24 (4): 956–68. doi:10.1093/molbev/msm012. PMID 17251180. http://mbe.oxfordjournals.org/cgi/content/abstract/24/4/956.  
  31. ^ Pombert JF, Otis C, Lemieux C, Turmel M (September 2005). "The chloroplast genome sequence of the green alga Pseudendoclonium akinetum (Ulvophyceae) reveals unusual structural features and new insights into the branching order of chlorophyte lineages". Mol. Biol. Evol. 22 (9): 1903–18. doi:10.1093/molbev/msi182. PMID 15930151. http://mbe.oxfordjournals.org/cgi/content/abstract/22/9/1903.  
  32. ^ de Cambiaire JC, Otis C, Lemieux C, Turmel M (2006). "The complete chloroplast genome sequence of the chlorophycean green alga Scenedesmus obliquus reveals a compact gene organization and a biased distribution of genes on the two DNA strands". BMC Evol. Biol. 6: 37. doi:10.1186/1471-2148-6-37. PMID 16638149. PMC 1513399. http://www.biomedcentral.com/1471-2148/6/37/abstract.  
  33. ^ Turmel M, Otis C, Lemieux C (2005). "The complete chloroplast DNA sequences of the charophycean green algae Staurastrum and Zygnema reveal that the chloroplast genome underwent extensive changes during the evolution of the Zygnematales". BMC Biol. 3: 22. doi:10.1186/1741-7007-3-22. PMID 16236178. PMC 1277820. http://www.biomedcentral.com/1741-7007/3/22.  
  34. ^ Bélanger AS, Brouard JS, Charlebois P, Otis C, Lemieux C, Turmel M (November 2006). "Distinctive architecture of the chloroplast genome in the chlorophycean green alga Stigeoclonium helveticum". Mol. Genet. Genomics 276 (5): 464–77. doi:10.1007/s00438-006-0156-2. PMID 16944205. http://www.springerlink.com/content/y8120n32p456j619/.  
  35. ^ Smith, David Roy and Lee, Robeert W (March 2009). "The mitochondrial and plastid genomes of Volvox carteri: bloated molecules rich in repetitive DNA". BMC Genomics 10 (132). doi:10.1186/1471-2164-10-132. http://www.biomedcentral.com/1471-2164/10/132.  
  36. ^ Niji Ohta; Motomichi Matsuzaki, Osami Misumi, Shin-ya Miyagishima, Hisayoshi Nozaki, Kan Tanaka, Tadasu Shin-I, Yuji Kohara and Tsuneyoshi Kuroiwa (2003). "Complete Sequence and Analysis of the Plastid Genome of the Unicellular Red Alga Cyanidioschyzon merolae". DNA Research 10 (2): 67–77. doi:10.1093/dnares/10.2.67. http://dnaresearch.oxfordjournals.org/cgi/content/abstract/10/2/67.  
  37. ^ Gernot Glöckner; André Rosenthal and Klaus Valentin (2000). "The Structure and Gene Repertoire of an Ancient Red Algal Plastid Genome". Journal of Molecular Evolution 51 (4): 382–90. doi:10.1007/s002390010101. http://www.springerlink.com/content/yndfgnk163ar2r55/.  
  38. ^ JC Hagopian; Reis M, Kitajima JP, Bhattacharya D, de Oliveira MC (2004). "Comparative analysis of the complete plastid genome sequence of the red alga Gracilaria tenuistipitata var. liui provides insights into the evolution of rhodoplasts and their relationship to other plastids.". Journal of Molecular Evolution 59: 464–77. doi:10.1007/s00239-004-2638-3.  
  39. ^ Susan E. Douglas; Susanne L. Penny (1999). "The Plastid Genome of the Cryptophyte Alga, Guillardia theta: Complete Sequence and Conserved Synteny Groups Confirm Its Common Ancestry with Red Algae". Journal of Molecular Evolution 48 (2): 236–44. doi:10.1007/PL00006462. http://www.springerlink.com/content/jj95knudjhl3fc93/.  
  40. ^ Matthew B. Rogers; Paul R. Gilson, Vanessa Su, Geoffrey I. McFadden,� and Patrick J. Keeling (2007). "The Complete Chloroplast Genome of the Chlorarachniophyte Bigelowiella natans: Evidence for Independent Origins of Chlorarachniophyte and Euglenid Secondary Endosymbionts". Mol. Biol. Evol 24 (1): 54–62. doi:10.1093/molbev/msl129.  
  41. ^ Hallick RB; Hong L, Drager RG, Favreau MR, Monfort A, Orsat B, Spielmann A, Stutz E. (1993). "Complete sequence of Euglena gracilis chloroplast DNA". Nucleic Acids Research 21: 3537–44. doi:10.1093/nar/21.15.3537.  
  42. ^ X Cai; Fuller AL, McDougald LR, Zhu G (2003). "Apicoplast genome of the coccidian Eimeria tenella". Gene 321: 39–46. doi:10.1016/j.gene.2003.08.008.  
  43. ^ Eva C.M. Nowack; Michael Melkonian and Gernot Glöckner (2008). "Chromatophore Genome Sequence of Paulinella Sheds Light on Acquisition of Photosynthesis by Eukaryotes". Current Biology 18 (6): 410–8. doi:10.1016/j.cub.2008.02.051. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VRT-4S3GVPJ-3&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=d249447500f326112b8f09da1247568b.  

Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message