The Full Wiki

Lytic cycle: Wikis

Advertisements
  

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Encyclopedia

From Wikipedia, the free encyclopedia

Lytic cycle, compared to lysogenic cycle

The lytic cycle is one of the two cycles of viral reproduction, the other being the lysogenic cycle. The lytic cycle is typically considered the main method of viral replication, since it results in the destruction of the infected cell.

Contents

Description

Viruses of the lytic cycle are called virulent viruses. The lytic cycle is a six-stage cycle. In the first stage, called "penetration," the virus injects its own nucleic acids into a host cell. Then the viral acids form a circle in the center of the cell. The cell then mistakenly copies the viral acids instead of its own nucleic acids. Then the viral DNA organize themselves as viruses inside the cell. When the number of viruses inside becomes too much for the cell to hold, the membrane splits and the viruses are free to infect other cells.

Advertisements

Penetration

To infect a cell, a virus must first enter the cell through the plasma membrane and (if present) the cell wall. Viruses do so by either attaching to a receptor on the cell's surface or by simple mechanical force. The virus then releases its genetic material (either single- or double-stranded RNA or DNA) into the cell. In doing this, the cell is infected and can also be targeted by the immune system.

Biosynthesis

The virus' nucleic acid uses the host cell’s machinery to make large amounts of viral components. In the case of DNA viruses, the DNA transcribes itself into messenger RNA (mRNA) molecules that are then used to direct the cell's ribosomes. One of the first polypeptides to be translated destroys the host's DNA. In retroviruses (which inject an RNA strand), a unique enzyme called reverse transcriptase transcribes the viral RNA into DNA, which is then transcribed again into RNA.

The biosynthesis is (e.g. T4) regulated in three phases of mRNA production followed by a phase of protein production.[1]

Early phase
Enzymes involved to modify the hosts DNA replication by RNA polymerase. Amongst other modifications, virus T4 changes the sigma factor of the host by producing an anti-sigma factor so that the host promotors are not recognized any more but now recognize T4 middle proteins.
Middle phase
Virus nucleic acid (DNA or RNA depending on virus type).
Late phase
Structural proteins including those for the head and the tail.

Maturation and lysis

After many copies of viral components are made, they are assembled into complete viruses. The phage then directs production of an enzyme that breaks down the bacteria cell wall and allows fluid to enter. The cell eventually becomes filled with viruses (typically 100-200) and liquid, and bursts, or lyses; thus giving the lytic cycle its name. The new viruses are then free to infect other cells.

Lytic cycle without lysis

Some viruses escape the host cell without bursting the cell membrane, but rather bud off from it by taking a portion of the membrane with them. Because it otherwise is characteristic of the lytic cycle in other steps, it still belongs to this category, although it is sometimes named the Productive Cycle. HIV, influenza and other viruses that infect eukaryotic organisms generally use this method.

References

  1. ^ Madigan M, Martinko J (editors) (2006). Brock Biology of Microorganisms (11th ed.). Prentice Hall. ISBN 0-13-144329-1.  


The lytic cycle is one of the two cycles of viral reproduction, the other being the lysogenic cycle. The lytic cycle is typically considered the main method of viral replication, since it results in the destruction of the infected cell.[citation needed]

Contents

Description

Viruses of the lytic cycle are called virulent viruses. The lytic cycle is a six-stage cycle. In the first stage, called "penetration," the virus injects its own nucleic acids into a host cell. Then the viral acids form a circle in the center of the cell. The cell then mistakenly copies the viral acids instead of its own nucleic acids. Then the viral DNA organize themselves as viruses inside the cell. When the number of viruses inside becomes too much for the cell to hold, the membrane splits and the viruses are free to infect other cells.

Penetration

To infect a cell, a virus must first enter the cell through the plasma membrane and (if present) the cell wall. Viruses do so by either attaching to a receptor on the cell's surface or by simple mechanical force. The virus then releases its genetic material (either single- or double-stranded RNA or DNA) into the cell. In doing this, the cell is infected and can also be targeted by the immune system.

Biosynthesis

The virus' nucleic acid uses the host cell’s machinery to make large amounts of viral components. In the case of DNA viruses, the DNA transcribes itself into messenger RNA (mRNA) molecules that are then used to direct the cell's ribosomes. One of the first polypeptides to be translated destroys the host's DNA. In retroviruses (which inject an RNA strand), a unique enzyme called reverse transcriptase transcribes the viral RNA into DNA, which is then transcribed again into RNA.

The biosynthesis is (e.g. T4) regulated in three phases of mRNA production followed by a phase of protein production.[1]

Early phase
Enzymes involved to modify the hosts DNA replication by RNA polymerase. Amongst other modifications, virus T4 changes the sigma factor of the host by producing an anti-sigma factor so that the host promotors are not recognized any more but now recognize T4 middle proteins.
Middle phase
Virus nucleic acid (DNA or RNA depending on virus type).
Late phase
Structural proteins including those for the head and the tail.

Maturation and lysis

After many copies of viral components are made, they are assembled into complete viruses. The phage then directs production of an enzyme that breaks down the bacteria cell wall and allows fluid to enter. The cell eventually becomes filled with viruses (typically 100-200) and liquid, and bursts, or lyses; thus giving the lytic cycle its name. The new viruses are then free to infect other cells.

Lytic cycle without lysis

Some viruses escape the host cell without bursting the cell membrane, but rather bud off from it by taking a portion of the membrane with them. Because it otherwise is characteristic of the lytic cycle in other steps, it still belongs to this category, although it is sometimes named the Productive Cycle. HIV, influenza and other viruses that infect eukaryotic organisms generally use this method.

References

  1. ^ Madigan M, Martinko J (editors) (2006). Brock Biology of Microorganisms (11th ed.). Prentice Hall. ISBN 0-13-144329-1. 


Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message