The Full Wiki

M4 Sherman: Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.


From Wikipedia, the free encyclopedia

World War II foreign variants and use: Lend-Lease Sherman tanks. Post-World War II foreign variants and use: Postwar Sherman tanks
Medium Tank M4
An M4A3E8 76 mm armed Sherman tank made during the Second World War
Type Medium tank
Place of origin  United States
Service history
In service 1942–1955 (USA)
Used by  United States and many others, see Foreign variants and use
Wars World War II, Greek Civil War, Arab-Israeli War, Korean War, Suez Crisis, Indo-Pakistani War of 1965, Six-Day War, Indo-Pakistani War of 1971, Yom Kippur War
Production history
Designed 1940
Produced 1941–
Number built 50,000+
Weight 66,800 pounds (30.3 tonnes; 29.8 long tons; 33.4 short tons)
Length 19 ft 2 in (5.84 m)
Width 8 ft 7 in (2.62 m)
Height 9 ft (2.74 m)
Crew 5 (Commander, gunner, loader, driver, co-driver)

Armor 63 mm
75 mm M3 L/40 gun

90 rounds

.50 cal Browning M2HB machine gun (300 rounds),
2 × .30-06 Browning M1919A4 machine guns (4,750 rounds)
Engine Continental R975 C1 gasoline
400 hp (298 kW) gross at 2,400 rpm
350 hp (253 kW) net at 2,400 rpm
Power/weight 15.8 hp/tonne
Transmission Spicer[2] manual, synchromesh,[3] 4 forward (plus 1 overdrive)[4] and 1 reverse gear
Suspension Vertical Volute Spring Suspension (VVSS)
120 miles at 175 U.S. ga (193 km at 660 l; 80 octane)
Speed 25 to 30 mph (40 to 48 km/h)[1]

The M4 Sherman, formally Medium Tank, M4, was the primary tank used by the United States during World War II. It was also distributed to the Allies via lend-lease. Evolved from previous medium and light tanks, it was the first American medium tank with the main gun mounted on a fully traversing turret.

Production of the M4 medium tank exceeded 50,000 units and its chassis served as the basis for numerous other armored vehicles such as tank destroyers, tank retrievers, and self-propelled artillery. Only the Soviet T-34 tank was produced in larger numbers.

In the United Kingdom the M4 was given the name Sherman after Union General William Tecumseh Sherman, following the British practice of naming their American-built tanks after famous American Civil War generals. Subsequently the British name found its way into common use in the U.S.

The original Shermans were powerful enough to defeat the German tanks they faced when first deployed in North Africa. But later, the Shermans were often pitted against Tiger I and Panther tanks with heavier armor and more powerful guns, and the U.S. tank forces had to rely on numbers and mobility, often suffering heavy casualties.

America's most advanced tank of the war was the M26 Pershing, but it was developed too late to play a significant role, as the U.S. emphasized volume production of more Shermans. Post-war tank development built upon the M26, but the Sherman and its variants continued to be used in training and combat into the late 20th century.[5]


U.S. design prototype

A cutaway showing the internal arrangement of an M4A4 Sherman.

The U.S. Army Ordnance Department designed the Medium Tank M4 as a replacement for the M3 Medium. The M3 was an up-gunned development of the M2 Medium Tank of 1939, itself derived from the M2 Light Tank of 1935. The M3 was developed as a stopgap measure until a new turret mounting a 75 mm gun could be devised, and suffered from a number of design faults, mainly a large silhouette, and an inflexible side sponson mounting for the main gun, which could not be aimed across the side on which it was mounted.

Detailed design characteristics for the M4 were submitted by the Ordnance Department on 31 August 1940, but development of a prototype had to be delayed while the final production designs of the M3 were finished, and the M3 entered full-scale production.

On 18 April 1941 the U.S. Armored Force Board chose the simplest of five designs. Known as the T6, the design was a modified M3 hull and chassis, carrying a newly designed turret mounting the Lee's main gun. This became the Sherman.[6]

The Sherman's reliability benefitted from many design features first developed in U.S. light tanks during the 1930s, including vertical volute spring suspension, rubber-bushed tracks, and rear-mounted radial engine with drive sprockets in front. The designated goals were to produce a fast, dependable medium tank able to support infantry, provide breakthrough striking capacity, and defeat any tank currently in use by the Axis nations.

The prototype M4 was completed on 2 September 1941. Unlike later M3s, the hull was cast. It had a side hatch which was eliminated from production models. The T6 became standardized as the M4, and production began in October 1941.[7]

U.S. production history

Cutaway Sherman showing transmission and driver seat
M4 and M4A1 (shown), the first Shermans, share the inverted U backplate and inherited their engine and exhaust system from the earlier M3 Lee.

The U.S. Army had seven main sub-designations for M4 variants during the production period: M4, M4A1, M4A2, M4A3, M4A4, M4A5, and M4A6. These designations did not necessarily indicate linear improvement: for example, A4 is not meant to indicate 'better than' A3. These sub-types indicated standardized production variations, which were in fact often manufactured concurrently at different locations. The sub-types differed mainly in engines, although the M4A1 differed from the M4 by its fully-cast upper hull rather than by engine; M4A4 had a longer engine system that required a longer hull, a longer suspension system, and more track blocks; M4A5 was an administrative placeholder for Canadian production; and M4A6 had an elongated chassis, but fewer than 100 of these were produced.

While most Shermans ran on gasoline, the M4A2 and M4A6 had diesel engines: the M4A2 with a pair of GMC 6-71 straight six engines,[8] the M4A6 a Caterpillar RD1820 radial.[9] (These, plus the M4A4, which used the multibank engine, were mostly supplied to Allied countries under Lend-Lease.)[10] "M4" can refer specifically to the initial sub-type with its Continental radial engine, or generically, to the entire family of seven Sherman sub-types, depending on context. Many details of production, shape, strength, and performance improved throughout production without a change to the tank's basic model number; more durable suspension units, safer "wet" (W) ammunition stowage, and stronger armor arrangements, such as the M4 Composite, which had a cast front hull section mated to a welded rear hull. British nomenclature differed from that employed by the U.S.

A 24-volt electrical system was used in the M4 .[11]

M4 Sherman: selected models
Designation Main Armament Hull Engine
M4(105) 105 mm howitzer welded gasoline Continental R975 radial
M4 Composite 75 mm cast front welded sides gasoline Continental R975 radial
M4A1(76)W cast gasoline Continental R975 radial
M4A2 75 mm welded diesel GM 6046 (2x6-71 inline)
M4A3W 75 mm welded gasoline Ford GAA V8
M4A3E2 "Jumbo" 75 mm (some 76 mm) welded gasoline Ford GAA V8
M4A3E8(76)W "Easy Eight" 76 mm welded gasoline Ford GAA V8
M4A4 75 mm welded lengthened gasoline Chrysler A57 5x6-cyl inline
M4A6 75 mm cast front welded sides lengthened diesel Caterpillar D200A radial

Early Shermans mounted a 75 mm medium-velocity general-purpose gun. Although Ordnance began work on the Medium Tank T20 as a Sherman replacement, ultimately the Army decided to minimize production disruption by incorporating elements of other tank designs into Sherman production. Later M4A1, M4A2, and M4A3 models received the larger T23 turret, with a high-velocity 76 mm gun M1, which reduced the number of HE and smoke rounds carried and increased the number of anti-tank rounds. Later, the M4 and M4A3 were factory-produced with a 105 mm howitzer and a new distinctive mantlet in the original turret. The first standard-production 76 mm gun Sherman was an M4A1, accepted in January 1944, and the first standard-production 105 mm howitzer Sherman was an M4 accepted in February 1944.

In June-July 1944, the Army accepted a limited run of 254 M4A3E2 Jumbo Shermans, which had very thick armor, and the 75 mm gun in a new, heavier T23-style turret, in order to assault fortifications. The M4A3 was the first to be factory-produced with the HVSS (horizontal volute spring suspension) suspension with wider tracks to distribute weight, and the smooth ride of the HVSS with its experimental E8 designation led to the nickname Easy Eight for Shermans so equipped. Both the Americans and the British developed a wide array of special attachments for the Sherman; few saw combat, and most remained experimental. Those which saw action included the bulldozer blade for Sherman dozer tanks, Duplex Drive for "swimming" Sherman tanks, R3 flame thrower for Zippo flame tanks, and the T34 60-tube Calliope 4.5" rocket launcher for the Sherman turret. The British variants (DD's and mine flails) were among "Hobart's Funnies," named after their commander, Percy Hobart of the 79th Armoured Division.

The M4 Sherman's basic chassis was used for all the sundry roles of a modern mechanized force: roughly 50,000 Sherman tanks, plus thousands more derivative vehicles under different model numbers. These included M32 and M74 "tow truck"-style recovery tanks with winches, booms, and an 81 mm mortar for smoke screens; M34 (from M32B1) and M35 (from M10A1) artillery prime movers; M7B1, M12, M40, and M43 self-propelled artillery; and up-gunned M10 and M36 tank destroyers.

Service history

First type in U.S. service: A U.S. 7th Army M4A1 lands at Red Beach 2, Sicily on July 10, 1943 during the Allied invasion of Sicily.
Last type in U.S. service: M4A3E8 Sherman used as artillery position during the Korean War
M4A3E8 participating in a World War II victory parade

The M4 Sherman served with the U.S. Army and Marine Corps during World War II. The U.S. also supplied large numbers to the various Allied countries. Shermans were used during the war by British and Commonwealth armies, the Soviet Union's Red Army, Free French forces, the Polish army in exile, China's National Revolutionary Army, and Brazil's Expeditionary Force.

The U.S. Marine Corps used the diesel M4A2 and gasoline-powered M4A3 in the Pacific. However, the Chief of the Army's Armored Force, Lt. Gen. Jacob L. Devers, ordered that no diesel-engined Sherman tanks be used by the Army outside the Zone of Interior (the continental U.S.). The U.S. Army used all types for either training or testing within the United States, but intended the M4A2 and M4A4 to be the primary Lend-Lease exports.

The M4A1 Sherman first saw combat at the Second Battle of El Alamein in October 1942 with the British 8th Army. The first U.S. Shermans in battle were M4A1s in Operation Torch the next month. At this time, Shermans successfully engaged German Panzer IIIs with long barreled 50mm L60 guns, and Panzer IVs with short barreled 75 mm L24 guns. Additional M4 and M4A1s replaced M3 Lees in U.S. tank battalions over the course of the North African campaigns. However, by June 1944, most German tanks were up-gunned and 75 mm Shermans were out-gunned. The M4 and M4A1 were the main types in U.S. units until late 1944, when the Army began replacing them with the preferred M4A3 with its more powerful 500 hp (370 kW) engine. Some M4s and M4A1s continued in U.S. service for the rest of the war.

The first Sherman to enter combat with the 76 mm gun (July 1944) was the M4A1, closely followed by the M4A3. By the end of the war, half the U.S. Army Shermans in Europe had the 76 mm gun. The first HVSS Sherman to see combat was the M4A3E8(76)W in December 1944.

After World War II, the U.S. kept the M4A3E8 "Easy Eight" in service with either the 76 mm gun or a 105 mm howitzer. The Sherman remained a common U.S. tank in the 1950-1953 Korean War, but the Army replaced the Shermans with Patton tanks during the 1950s. The U.S. continued to transfer Shermans to its allies, which contributed to wide foreign use worldwide.


The gun on the original M4 was the short-barreled medium-velocity 75L24 mm M3 gun. When the Sherman first saw combat in North Africa in late 1942 against Panzer III and Panzer IV tanks, its gun could penetrate the armor of these tanks at normal combat ranges.[citation needed]

U.S. Army Intelligence discounted the arrival of the Tiger I in late 1942 and the Panther tanks in 1943, predicting that they would be produced only in small numbers. The U.S. Army failed to anticipate that the Germans would make the Panther the standard tank of their panzer divisions in 1944, supported by substantial numbers of Tigers.[12]

As a result, the Bureau of Ordnance, which had developed new 90 mm and 76 mm anti-tank guns in 1943, didn't provide U.S. armored forces with the guns required to optimally fight the Panther and Tiger. Even in 1943, most German AFVs (later models of the Panzer IV, StuG III, and Marder III) mounted 7.5 cm KwK 40. As a result, even weakly-armored light German tank destroyers such as Marder III, which was meant to be a stop-gap measure to fight Soviet tanks in 1942, could destroy Shermans from a distance. The disparity in firepower between the German AFVs of 1943 and the 75 mm M4 was the impetus to begin production of the 76 mm M4 in April 1944.[13] The U.S. 76 mm proved to be comparable in penetrating power to the 7.5cm KwK 40,[14] and this was the most common German anti-tank gun encountered during the fighting in France.[15]

The tank destroyer doctrine

Gen. Lesley J. McNair was head of Army Ground Forces. McNair, an artilleryman, pushed the tank destroyer doctrine within the U.S. Armored Forces. Tanks were to support the infantry, exploit breakthroughs, and avoid tank-to-tank battles. Enemy tanks were to be engaged by the tank destroyer force, composed of a mix of towed and self-propelled tank destroyers. Towed "tank destroyers" were simply towed antitank guns. Self-propelled tank destroyers, called "motorized gun carriages", looked like tanks but were lightly armored with open topped turrets. The tank destroyers were supposed to be faster and carry a more powerful anti-tank gun than tanks; armor was sacrificed for speed. The tank destroyer doctrine played a large role in the lack of urgency in improving the firepower of the M4 Sherman, as the emphasis was on its role as infantry support.[16]

McNair approved the 76 mm upgrade to the M4 Sherman and production of the 90 mm M36 tank destroyer, but he staunchly opposed development of the T26 and other proposed heavy tanks during the crucial period of 1943 because he saw no "battle need" for them.

In mid-1943, Lt. General Devers, now commander of U.S. forces in the European Theater of Operations, asked for 250 T26s for use in the invasion of France. McNair refused. Devers appealed to General George Marshall, the Army Chief of Staff. Marshall summarily ordered the tanks to be provided to the ETO as soon as they could be produced. Soon after the Normandy invasion, General Eisenhower urgently requested heavy tanks (now designated M26 Pershing), but McNair's continued opposition delayed production. General Marshall intervened again and the tanks were eventually brought into production. But combat use of the M26 was delayed until almost the end of the war. A few entered combat on February 25, 1945, too late to have any effect on the battlefield.[17]

Gun development

This M4A2(76) HVSS shows the T23 turret with later 76 mm gun's muzzle brake. This one also has fenders, usually omitted on U.S. vehicles to ease maintenance.

When the 76 mm gun was first installed in the M4 turret, it was found to unbalance the turret and the gun barrel was also thought to protrude too far forward, making it more difficult to transport and susceptible to hit the ground on undulating terrain. Ordnance reduced the barrel length by 15 inches (from 57 calibers long to 52), which decreased performance by 10%. Mounting this gun in the original M4 turret proved to be problematic, and so the turret for the aborted T23 tank project was used instead for the definitive production version of the 76 mm M4 Shermans.[18]

Although tests against armor plate suggested that the new M1A1 76 mm gun would be adequate, testing against Panther tanks was never done. This would have shown that the gun could not penetrate the glacis plate of the Panther at any distance, and could only penetrate the center of the mantlet at 100 meters.[19]

The 90 mm gun developed by U.S. Ordnance could not be easily installed on the M4, but was installed on the open turreted M36 tank destroyer, and was the main gun for the T26 tank project (which eventually became the M26 Pershing). An attempt to upgrade the M4 Sherman by installing the 90 mm T26 turret on a M4A3 hull in April 1944 was halted after realizing it could not go into production sooner than the T26 and would likely delay T26 development.[20]

In testing prior to the invasion of Normandy, the new 76 mm gun on the M4 Sherman was found to have a undesirable muzzle blast that kicked up dust from the ground and obscured vision for further firing. The addition of a muzzle brake directed blast sideways to solve this problem. It also had a much weaker high explosive shell than the existing 75 mm gun. Standard Army doctrine at the time emphasized the importance of the infantry support role of the tank, and the high explosive round was considered more important. Hence the 76 mm M4 was not initially accepted by various U.S. Armored Division commanders, even though a number had already been produced and were available. All of the U.S. Army M4s deployed initially in Normandy in June 1944 had the 75 mm gun.[21]

The British were more astute in their anticipation of the future development of German armor. They mounted their high-powered Ordnance QF 17-pounder gun in a standard 75 mm M4 Sherman turret. These conversions became the Sherman Firefly. The 17 pounder still could not penetrate the glacis plate of the Panther but it could easily penetrate the Panther's gun mantlet at combat range;[22] moreover it could penetrate the front and side armor of the Tiger I at nearly the same range that the Tiger I could penetrate the Sherman.[23]

In late 1943, the British offered the 17 pounder to the U.S. Army for use in their M4 tanks. Gen. Devers insisted on comparison tests between the 17 pounder and the U.S. 90 mm gun (even though the 17 pounder could be mounted in a standard M4 turret while the 90 mm gun needed a new turret). The tests were finally done on March 25, 1944, and May 23, 1944; they seemed to show that the 90 mm gun was equal to or better than the 17 pounder. By then, production of the 76 mm M4 and the 90 mm M36 tank destroyer were both underway and U.S. Army interest in the 17 pounder waned.

Fighting against Panther tanks in Normandy quickly demonstrated the need for better anti-tank firepower, and the 76 mm M4s were deployed to First Army units in July 1944. Patton's Third Army were initially issued 75 mm M4s and accepted 76 mm M4 Shermans only after the Battle of Arracourt against Panther tanks in late September 1944.[24]

High Velocity Armor Piercing (HVAP) ammunition, standardized as M93, became available in August 1944 for the 76 mm gun. The projectile contained a tungsten core penetrator surrounded by a lightweight aluminum body, which gave it a higher velocity and more penetrating power. However, this new projectile was still unable to penetrate the glacis plate of the Panther tank although it could penetrate the turret mantlet of the Panther at longer ranges than standard ammunition; it brought the U.S. 76 mm gun closer in performance to the British 17 pounder using standard APC ammunition. Because of tungsten shortages, HVAP rounds were constantly in short supply. Distribution was prioritized to U.S. tank destroyer units; most Shermans carried only a few rounds and some units never received any.[25]

After the heavy tank losses of the Battle of the Bulge, in January 1945, General Eisenhower asked that no more 75 mm M4s be sent to Europe: only 76 mm M4s were wanted.[26]

Additionally, interest in mounting the British 17 pounder in U.S. Shermans flared anew. In February 1945, the U.S. Army began sending 75 mm M4s to England for conversion to the 17 pounder gun. Approximately 100 tanks were completed by the beginning of May. By then, the end of the war in Europe was clearly in sight, and the U.S. Army decided that the logistics of adding a new ammunition caliber to the supply train was not warranted. None of the converted 17-pounder M4s were deployed by the U.S., and it is unclear what happened to most of them, although some were given to the British as part of Lend-Lease.[27]

The higher-velocity 76 mm M1 gun gave Shermans anti-tank firepower at least equal to most of the German vehicles they encountered, particularly the Panzer IV, and StuG. However, with a regular AP (Armor Piercing shot) ammunition (M79) or APCBC (M62) shells, the 76 mm might knock out a Panther only at close range with a shot to its mantlet, or with a shot to its flank. At long range, the Sherman was badly outmatched by the Panther's 75 mm gun, which could easily penetrate the Sherman's armor from all angles. This contributed to the high losses of Sherman tanks experienced by the U.S. Army in Europe.[28]

The M4 was criticized by its crews for inability to pivot turn (turn in place), limiting its usefulness in urban warfare against pivot turning Panthers.[29] This deficiency was partially compensated by the faster traverse of its turret.


A USMC M4A3R3 uses its flame thrower armament during the Battle of Iwo Jima.

In the relatively few tank battles of the Pacific War, even the 75 mm gun Shermans outclassed the Japanese Type 95 Ha-Go light and Type 97 Chi-Ha medium tanks, which were 1930s designs. High explosive ammunition was preferred because armor-piercing rounds went right through the thin armor of a Japanese tank and often out the other side without necessarily stopping it. Although the high-velocity guns of the tank destroyers were useful for penetrating fortifications, Shermans armed with flamethrowers also were used to destroy Japanese fortifications. There were several types of flamethrowers, differing primarily in the type and location of the projector.

The Sherman was one of the first widely produced tanks to feature a gyroscopic stabilized gun and sight. The stabilization was only in the vertical plane, as the mechanism could not slew the turret. The utility of the stabilization is debatable, with some saying it was useful for its intended purpose, others only for using the sights for stabilized viewing on the move.[30]

A variant of the M4 Sherman was armed with the 105 mm M4 howitzers, which provided even more powerful high-explosive armament. However, they were of limited use in fighting enemy tanks due to the poor anti-armor performance of the howitzer, which was not intended to fight other tanks.

The 75 mm gun had a white phosphorus shell originally intended for use as an artillery marker to help with targeting. M4 tank crews discovered that the shell could also be used against German Tiger and Panther tanks - when the burning white phosphorus splattered against the German tank, the acrid smoke would get sucked inside the tank, and together with the fear of the fire spreading inside the tank, cause the crew to abandon the tank.[31] There were several recorded instances where white phosphorus shells "knocked out" German tanks in this fashion.[32]


This early 75 mm gun turret shows the single hatch - note the additional rectangular external (welded on) applique armor patch reinforcing the ammunition bin protection on the hull side.

The frontal turret armour of the M4 ranged from 64mm[33] to 76 mm at a 30 degree angle;[34] the M4’s gun mantlet was also protected by 76 mm thick armour.[33] The side turret was 50 mm at a 5 degree angle[34] while the rear was 64 mm at a 90 degree angle and the turret roof was 25 mm thick.[35] The hull front sported 51 mm armour;[33][35] the upper hull being at a 56 degree angle while the lower half of the hull was curved. Historian Stephen Hart states the armour plates of the front hull were sloped between 45 and 90 degrees.[35] The hull side was 38mm[34] at a 90 degree angle[35] to 45 mm thick.[36] The hull rear was 38 mm sloped 85-90 degrees. The hull roof was 25mm.[35]The armor of the M4 was effective against most early and mid-war anti-tank weapons[33] but was vulnerable to penetration from 75 mm/L48 tank guns up to a range of 1,370[37] – 1,500 meters[38]. Regardless of this vulnerability historian John Buckley has stated the M4 was "moderately superior to the Panzer IV" and that "The vast majority of German tanks encountered in Normandy were either inferior, or at least, merely equal to the Sherman."[39] Regardless, the Sherman, like most Allied vehicles, remained vulnerable to infantry anti-tank weapons such as the Panzerschreck and Panzerfaust.[citation needed]

Progressively thicker armour was added to hull front and turret mantlet in various improved models. Field improvisations included placing sandbags, spare track links, concrete, wire mesh, or even wood for increased protection against shaped-charge rounds, even though it had little effect. Mounting sandbags around a tank had little effect against high-velocity anti-tank gunfire, but was thought to provide standoff protection against HEAT weapons, primarily the German Panzerfaust and Panzerschreck. By 1945, it was rare to see a Sherman without any field improvisations. In the only study known to have been done to test the use of sandbags, on March 9, 1945, officers of the 1st Armored Group tested standard Panzerfaust 60s against sandbagged M4s; shots against the side blew away the sandbags and still penetrated the side armour, whereas shots fired at an angle against the front plate blew away some of the sandbags but failed to penetrate the armour. Earlier, in the summer of 1944, General Patton, informed by his ordnance officers that sandbags were useless and that the machines' chassis suffered from the extra weight, had forbidden the use of sandbags. Following the clamour for better armor and firepower after the losses of the Battle of the Bulge, Patton ordered extra armour plates salvaged from knocked-out American and German tanks welded to the front hulls of tanks of his command. Approximately 36 of these up-armoured M4s were supplied to each of the armored divisions of the Third Army in the spring of 1945.[40]

M4A3E2 Sherman Jumbo: Some units replaced the original 75 mm gun with a 76 mm gun.

The M4A3E2 Sherman Jumbo variant had even thicker frontal armor than the Tiger I. Intended for the assault to break out of the Normandy beachhead, it entered combat in August 1944.[citation needed]

The M4 had an escape hatch on the hull bottom to help the crew survive and, in the Pacific, Marines used this Sherman feature in reverse to recover wounded infantry under fire. Combat experience indicated the single hatch in the 3-man turret to be inadequate for timely evacuation, so Ordnance added a loader's hatch beside the commander's. Later M4s also received redesigned hull hatches for better egress.[citation needed]

Early Sherman models were prone to burning when struck by high velocity rounds. The Sherman gained grim nicknames like "Tommycooker" (by the Germans who referred to British soldiers as "Tommies"; a tommy cooker was a World War I era trench stove). With gallows humor, the British called it the "Ronson", after the cigarette lighter with the slogan "Lights up the first time, every time!" while Polish tankers referred to it as "The Burning Grave". This vulnerability increased crew casualties and meant that damaged vehicles were less likely to be repairable.[citation needed]

The 1943 modernization program for older tanks added welded patches of appliqué armour to the sides of the turret and hull. Note also the Culin hedgerow cutter on the front, a field improvisation to break through the thick hedgerows of the Normandy bocage.

Research conducted by the British No. 2 Operational Research Section, after the Normandy campaign, concluded that a Sherman would be set alight 82% of the time following an average of 1.89 penetrations of the tank’s armour; in comparison they also concluded that the Panzer IV would catch fire 80% of the time following an average of 1.5 penetrations, the Panther would light 63% of the time following 3.24 penetrations, and the Tiger would catch fire 80% of the time following 3.25 penetrations.[41] John Buckley, using a case study of the 8th and 29th Armoured Brigades found that of the 166 Shermans knocked out in combat during the Normandy campaign, only 94 were burnt out; 56.6%. Buckley also notes that an American survey carried out concluded that 65% of tanks burnt out after being penetrated.[42] United States Army research proved that the major reason for this was the stowage of main gun ammunition in the sponsons above the tracks.

At first a partial remedy to ammunition fires in the M4 was found by welding one-inch thick appliqué armour plates to the sponson sides over the ammunition stowage bins. Later models moved ammunition stowage to the hull floor, with additional water jackets surrounding the main gun ammunition stowage. This decreased the likelihood of the tank catching fire. A U.S. Army study in 1945 concluded that only 10-15 percent of wet-stowage Shermans burned when penetrated, compared to 60-80 percent of the older dry-stowage Shermans[43] The belief that the fuel tank was a culprit is unsupported. Most World War Two tanks used gasoline engines, and although fuel fires did occasionally occur in tanks, such fires were far less common and less deadly than a tank's ammunition magazines igniting.[44] This assessment is supported by Buckley who notes that in many cases the fuel tank of the M4 had been found intact after the tank burnt out due to the ammunition cooking off. Tank crew testimony also supports this position; eye witness reports describe "fierce, blinding jets of flame", which is inconsistent with gasoline-related fires but fits cordite flash.[42]


Vertical volute springs of Stuart tank with similar suspension system

The U.S. Army restricted the Sherman's height, width, and weight so that it could be transported via typical bridges, roads, and railroads. This insured strategic, logistical, and tactical flexibility.

The Sherman had good speed both on- and off-road. Off-road performance varied. In the desert, the Sherman's rubber tracks performed well. In the confined, hilly terrain of Italy, the Sherman could often cross terrain German tanks could not.[citation needed] However, U.S. crews found that on soft ground such as mud or snow, the narrow tracks gave poor ground pressure compared to wide-tracked second-generation German tanks such as the Panther. Soviet experiences were similar and tracks were modified to give better grip in the snow. The U.S. Army issued extended end connectors or "duckbills" to add width to the standard tracks as a stopgap solution. Duckbills were original factory equipment for the heavy M4A3E2 Jumbo to compensate for the extra weight of armor. The M4A3E8 "Easy Eight" Shermans and other late models with wider-tracked HVSS suspension corrected these problems, but formed only a small proportion of the tanks in service even in 1945.

The size and weight restrictions limited the Sherman's armor protection and gun power. Thus U.S. commanders in Europe repeatedly asked for the M26 Pershing heavy tank.[citation needed] Some were finally delivered in 1945. The size and weight of the new tank created no serious problems in transportation to the theater or tactical employment.[citation needed] Thus, the theoretical advantages of the M4 Sherman in this respect proved to be illusory.[citation needed] However, the M26 could not be landed across a beach and required a fully equipped port with cranes.

US variants

The M4A1, A2 and A3 compared.
This M32 Tank Recovery Vehicle shows the E8 HVSS track suspension that distributed weight more widely.

Vehicles that used the M4 chassis or hull:

Foreign variants and use

The Sherman was extensively supplied through Lend-Lease to Allied countries. Britain took nearly 80% of Lend-Lease deliveries, some of which was passed on to other allies. Some of these remained in service for many years.

After World War II, Shermans were supplied to some NATO armies.

Shermans were used by U.S. and allied forces in the Korean War.

Shermans also went to Israel. The Israeli up-gunned 75 mm M-50 and 105 mm armed M-51 Super Shermans are remarkable examples of how a long obsolete design can be upgraded in front-line use.[45] They saw combat in the 1967 Six-Day War fighting Soviet World War II-era armor like the T34/85, and also in the 1973 Yom Kippur War, proving effective even against newer, heavier Soviet tanks like the T-54/55.

Foreign users
 Republic of China
 South Africa
 South Korea
 Soviet Union
 United Kingdom

See also


  1. ^ Zaloga 1993, p. 19
  2. ^ Berndt, Thomas. Standard Catalog of U.S. Military Vehicles (Krause Publications, 1993), p.195.
  3. ^ Berndt, p.195.
  4. ^ Berndt, p.195.
  5. ^ Hunnicutt 1978
  6. ^ AFV database
  7. ^ Opening Salvo: M4A1 Sherman Tank by Michael J. Canavan
  8. ^ Berndt, Thomas. Standard Catalog of U.S. Military Vehicles (Krause Publications, 1993), pp.192-3.
  9. ^ Berndt, pp.192-3.
  10. ^ Berndt, pp.190 & 192-3.
  11. ^ Berndt, p.195.
  12. ^ Zaloga 2008, p. 94-97
  13. ^ Zaloga p.115-116
  14. ^ – Intelligence – Text Database of Penetration Data
  15. ^ Zaloga 2008. p. 93
  16. ^ Zaloga 2008, "McNair's Folly" p. 72–77
  17. ^ Zaloga 2008, pp. 120–125, 287
  18. ^ Zaloga pp. 106–108, 115–116
  19. ^ Zaloga 2008 pp. 124–125
  20. ^ Zaloga 2008, pp. 126–130
  21. ^ Zaloga 129-131
  22. ^ Zaloga 2008, p. 132-135
  23. ^ Jentz 1997 p. 13-14 German Army Wa Pruef 1 report dated Oct. 5, 1944, and British Department of Tank Design Experimental Report A.T.No.252 Part II, trials conducted March 16–22, 1945
  24. ^ Zaloga 2008, pp. 166, 193
  25. ^ Zaloga 2008, pp. 194–195
  26. ^ Zaloga 2008, pp. 268–269
  27. ^ Zaloga 2008, pp. 276–277
  28. ^ "12th Army Group, Report of Operations (Final After Action Report)" Vol. XI, Wiesbaden, Germany, 1945, pp. 66-67.
  29. ^ Green 2005, p. 88.
  30. ^ "M4 Sherman at War" by Michael Green, James D. Brown, Zenith Press; 1st edition (February 15, 2007), pp. 87-88.
  31. ^ Zaloga 2008 pg. 182
  32. ^ Schneider 2004, p. 303
  33. ^ a b c d Zaloga (1993), p.14
  34. ^ a b c Reid, p. 215
  35. ^ a b c d e Hart, p. 27
  36. ^ Buckley, p. 110
  37. ^ Reid, p. 374
  38. ^ Buckley, p. 126
  39. ^ Buckley, p. 117
  40. ^ Zaloga (2008), p. 279-284
  41. ^ Copp, pp. 399-406
  42. ^ a b Buckley, p. 127
  43. ^ Zaloga (2008), p. 116-118
  44. ^ Zaloga (2008), p. 116-118
  45. ^ Gelbart 1996:45


M-4 tankers, 1942. OWI photo.
  • Berndt, Thomas. Standard Catalog of U.S. Military Vehicles. Iola, WI: Krause Publications, 1993. ISBN 0-87341-223-0.
  • Buckley, John (2006) [2004]. British Armour in the Normandy Campaign 1944. London: Taylor & Francis. ISBN 0-41540-773-7. OCLC 154699922. 
  • Cooper, Belton Y (1998). Death Traps: The Survival of an American Armored Division in World War II. Novato, CA: Presidio. ISBN 0-89141-670-6. 
  • Green, Michael (2005). Panzers at War. City: Zenith Press. ISBN 978-0760321522. 
  • Green, Michael (2007). M4 Sherman at War. City: Zenith Press. ISBN 978-0760327845. 
  • Hart, Stephen Ashley (2007). Sherman Firefly Vs Tiger: Normandy 1944 (Duel): Normandy 1944. Osprey Publishing. ISBN 1-84603-150-8. 
  • Hernandez Cabos, Rodrigo; Prigent, John (2001). M4 Sherman. Osprey. ISBN 1-84176-207-5. 
  • Hunnicutt, R. (1978). Sherman. San Rafeal: Taurus Enterprises. ISBN 9780891410805. 
  • Jentz, Thomas (1997). Germany's Tiger Tanks Tiger I & II: Combat Tactics. Atglen, PA: Schiffer Military History. ISBN 0764302256. 
  • Reid, Brian (2005). No Holding Back. Robin Brass Studio. ISBN 1-896941-40-0. 
  • Schneider, Wolfgang (2004). Tigers in Combat I. Mechanicsburg, PA: Stackpole Books; 2nd edition, originally published 2000 by J.J. Fedorowicz Publishing, Inc. Winnipeg, Canada. ISBN 0811731715. 
  • Wilbeck, Christopher (2004). Sledgehammers. Strengths and Flaws of Tiger Tank Battalions in World War II. The Aberjona Press. ISBN 9780971765023. 
  • Zaloga, Steven (1993). Sherman Medium Tank 1942-1945. City: Osprey Publishing (UK). ISBN 9781855322967. 
  • Zaloga, Steven (2008). Armored Thunderbolt. Mechanicsburg, PA: Stackpole Books. ISBN 9780811704243. 

External links

Got something to say? Make a comment.
Your name
Your email address