The Full Wiki

Magnetic tape: Wikis

Advertisements
  
  
  

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Did you know ...


More interesting facts on Magnetic tape

Include this on your site/blog:

Encyclopedia

From Wikipedia, the free encyclopedia

7-inch reel of ¼-inch-wide audio recording tape, typical of consumer use in the 1950s–70s.

Magnetic tape is a medium for magnetic recording, made of a thin magnetizable coating on a long, narrow strip of plastic. Most audio, video and computer data storage is this type. It was developed in Germany, based on magnetic wire recording. Devices that record and play back audio and video using magnetic tape are tape recorders and video tape recorders. A device that stores computer data on magnetic tape is a tape drive (tape unit, streamer).

Magnetic tape revolutionized broadcast and recording. When all radio was live, it allowed programming to be prerecorded. At a time when gramophone records were recorded in one take, it allowed recordings in multiple parts, which mixed and edited with tolerable loss in quality. It is a key technology in early computer development, allowing unparalleled amounts of data to be mechanically created, stored for long periods, and to be rapidly accessed.

Today, other technologies can perform the functions of magnetic tape. In many cases these technologies are replacing tape. Despite this, innovation in the technology continues and tape is still widely used.

Over years, magnetic tape can suffer from deterioration called sticky-shed syndrome. Caused by absorption of moisture into the binder of the tape, it can render the tape unusable.

Contents

Audio recording

Magnetic tape was invented for recording sound by Fritz Pfleumer in 1928 in Germany, based on the invention of magnetic wire recording by Valdemar Poulsen in 1898. Pfleumer's invention used an iron oxide(Fe2O3) powder coating on a long strip of paper. This invention was further developed by the German electronics company AEG, which manufactured the recording machines and BASF, which manufactured the tape. In 1933, working for AEG, Eduard Schuller developed the ring shaped tape head. Previous head designs were needle shaped and tended to shred the tape. An important discovery made in this period was the technique of AC biasing which improved the fidelity of the recorded audio signal by increasing the effective linearity of the recording medium.

Due to the escalating political tensions, and the outbreak of World War II, these developments were largely kept secret. Although the Allies knew from their monitoring of Nazi radio broadcasts that the Germans had some new form of recording technology, the nature was not discovered until the Allies acquired captured German recording equipment as they invaded Europe in the closing of the war. It was only after the war that Americans, particularly Jack Mullin, John Herbert Orr, and Richard H. Ranger were able to bring this technology out of Germany and develop it into commercially viable formats.

A wide variety of recorders and formats have developed since, most significantly reel-to-reel and Compact Cassette.

Video recording

The practice of recording and editing audio using magnetic tape rapidly established itself as an obvious improvement over previous methods. Many saw the potential of making the same improvements in recording television. Television ("video") signals are similar to audio signals. A major difference is that video signals use more bandwidth than audio signals. Existing audio tape recorders could not practically capture a video signal. Many set to work on resolving this problem. Jack Mullin (working for Bing Crosby) and the BBC both created crude working systems that involved moving the tape across a fixed tape head at very fast speeds. Neither system saw much use. It was the team at Ampex, lead by Charles Ginsburg, that made the breakthrough of using a spinning recoding head and normal tape speeds to achieve a very high head-to-tape speed that could record and reproduce the high bandwidth signals of video. The Ampex system was called Quadruplex and used 2 inch wide tape, mounted on reels like audio tape, which wrote the signal in what is now called transverse scan.

Later improvements by other companies, particularly Sony, lead to the development of helical scan and the enclosure of the tape reels in an easy-to-handle cartridge. Nearly all modern videotape systems use helical scan and cartridges. Videocassette recorders are very common in homes and television production facilities though many functions of the VCR are being replaced. Since the advent of digital video and computerized video processing, optical disc media and digital video recorders can now perform the same role as videotape. These devices also offer improvements like random access to any scene in the recording and "live" time shifting and are likely to replace videotape in many situations.

Data storage

In all tape formats, a tape drive (or "transport" or "deck") uses motors to wind the tape from one reel to another, passing tape heads to read, write or erase as it moves.

Magnetic tape was first used to record computer data in 1951 on the Eckert-Mauchly UNIVAC I. The recording medium was a thin strip of one half inch (12.65 mm) wide metal, consisting of nickel-plated bronze (called Vicalloy). Recording density was 128 characters per inch (198 micrometre/character) on eight tracks.

Small open reel of 9 track tape

Early IBM tape drives were floor-standing drives that used vacuum columns to physically buffer long U-shaped loops of tape. The two tape reels visibly fed tape through the columns, intermittently spinning the reels in rapid, unsynchronized bursts, resulting in visually-striking action. Stock shots of such vacuum-column tape drives in motion were widely used to represent "the computer" in movies and television.

Quarter inch cartridges, a data format commonly used in the 1980s and 1990s.

Most modern magnetic tape systems use reels that are much smaller than the 10.5 inch open reels and are fixed inside a cartridge to protect the tape and facilitate handling. Many late 1970s and early 1980s home computers used Compact Cassettes encoded with the Kansas City standard. Modern cartridge formats include LTO, DLT, and DAT/DDC.

Tape remains a viable alternative to disk in some situations due to its lower cost per bit. Though the areal density of tape is lower than for disk drives, the available surface area on a tape is far greater. The highest capacity tape media are generally on the same order as the largest available disk drives (about 1 TB in 2007). Tape has historically offered enough advantage in cost over disk storage to make it a viable product, particularly for backup, where media removability is necessary.

In 2002, Imation received an US$11.9 million grant from the U.S. National Institute of Standards and Technology for research into increasing the data capacity of magnetic tape.[1]

References

  1. ^ "The Future of Tape: Containing the Information Explosion". http://www.imation.ae/about_imation/50years/future_tape.html. Retrieved 7 October 2008. 

This article was originally based on material from the Free On-line Dictionary of Computing, which is licensed under the GFDL.

External links

Advertisements

Simple English

Magnetic tape a long and narrow strip of plastic that thin magnetic material is coated on. Nearly all recording tape is of this type, whether used for recording audio or video or computer data storage.

Magnetic tape recording uses magnetic tape which moves on a recording head. Electrical signals are fed to the recording head, inducing a pattern of magnetization similar to the signal. A playback head can then pick up the changes in magnetic field from the tape and convert it into an electrical signal.

Devices that record and playback audio and video using magnetic tape are generally called tape recorders and video tape recorders respectively. A device that stores computer data on magnetic tape can be called a tape drive, a tape unit, or a streamer. Autoloaders and tape libraries are frequently used to automate cartridge handling.

Contents

History

Magnetic tape was first invented for recording sound by Fritz Pfleumer in 1928 in Germany. Pfleumer's invention used an iron oxide(Fe2O3) powder coating on a long strip of paper.

Magnetic tape has been used for data storage for over 50 years. In this time, many advances in tape have been made. Modern magnetic tape is most commonly packaged in cartridges and cassettes.

Today, many other technologies like CD or DVD are replacing magnetic tape. However, innovation in the technology continues and tape is still widely used.

Strength and Weakness

When storing large amounts of data, tape can be cheaper than disk or other data storage options. Tape storage has always been used with large computer systems. Modern usage is a high capacity medium for backups and archives. As of 2008, the highest capacity tape cartridge (Sun StorageTek T10000B) can store 1 TB of data without using compression.

But, magnetic tape has quite a long wait time for random accesses since the deck must wind the tape to move from one data to another. (Magnetic tape data stroage uses Sequential access method.)

Other pages

Other websites

Error creating thumbnail: sh: convert: command not found
Wikimedia Commons has images, video, and/or sound related to:


Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message