The Full Wiki

Magnox: Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.


From Wikipedia, the free encyclopedia

Schematic diagram of a Magnox nuclear reactor showing gas flow. Note that the heat exchanger is outside the concrete radiation shielding. This represents an early Magnox design with a cylindrical, steel, pressure vessel.
For other uses of the term see Magnox (disambiguation).

Magnox is a now obsolete type of nuclear power reactor which was designed and is still in use in the United Kingdom, and was exported to other countries, both as a power plant, and, when operated accordingly, as a producer of plutonium for nuclear weapons. The name magnox comes from the alloy used to clad the fuel rods inside the reactor.


General description

A magnox fuel rod

Magnox reactors are pressurised, carbon dioxide cooled, graphite moderated reactors using natural uranium (i.e. unenriched) as fuel and magnox alloy as fuel cladding. Boron-steel control rods were used. The design was continuously refined, and very few units are identical. Early reactors have steel pressure vessels, while later units (Oldbury and Wylfa) are of reinforced concrete; some are cylindrical in design, but most are spherical. Working pressure varies from 6.9 to 19.35 bar for the steel pressure vessels, and the two reinforced concrete designs operated at 24.8 and 27 bar. No British construction company at the time was large enough to build all the power stations, so various competing consortia were involved, adding to the differences between the stations.

On-load refuelling was considered to be an economically essential part of the design for the civilian Magnox power stations, to maximise power station availability by eliminating refuelling downtime. This was particularly important for Magnox as the unenriched fuel had a low burnup, requiring more frequent changes of fuel than enriched uranium reactors. However the complicated refuelling equipment proved to be less reliable than the reactor systems, and perhaps not advantageous overall.[1]


The first Magnox reactors at Calder Hall[2] were designed principally to produce plutonium for nuclear weapons. The production of plutonium from uranium by irradiation in a pile generates large quantities of heat which must be disposed of, and so generating steam from this heat, which could be used in a turbine to generate electricity, or as process heat in the nearby Windscale works, was seen as a kind of "free" by-product of an essential process. The British government decided in 1957 that electricity generation by nuclear power would be promoted, and that there would be a building programme to achieve 5,000 to 6,000 MWe capacity by 1965. Although Sir John Cockcroft had advised the government that electricity generated by nuclear power would be more expensive than that from coal, the government decided that nuclear power stations as alternatives to coal fired power stations would be useful to reduce the bargaining power of the coal miners'unions, and so decided to go ahead. In 1960 a government white paper scaled back the building programme to 3,000 MWe, acknowledging that coal generation was 25% cheaper. A government statement to the House of Commons in 1963 stated that nuclear generation was more than twice as expensive as coal. The "plutonium credit" which assigned a value to the plutonium produced was used, initially secretly, to improve the economic case, although the operators of the power stations were never paid this credit. Once removed from the reactor the used fuel elements are stored in cooling ponds (with the exception of Wylfa which has dry stores) where the decay heat is transferred to the pond water, and then removed by the pond water circulation, cooling and filtration system. The fact that fuel elements can only be stored for a limited period in water before the Magnox cladding deteriorates, and must therefore inevitably be reprocessed, added to the costs of the Magnox programme.


The Magnox reactors were considered at the time to have a considerable degree of inherent safety because of their simple design, low power density, and gas coolant. Because of this they were not provided with secondary containment features. A safety design principle at the time was that of the "maximum credible accident", and the assumption was made that if the plant were designed to withstand that, then all other lesser but similar events would be encompassed. Loss of coolant accidents (at least those considered in the design) would not cause large-scale fuel failure as the Magnox cladding would retain the bulk of the radioactive material, assuming the reactor was rapidly shutdown (a SCRAM), because the decay heat could be removed by natural circulation of air. As the coolant is already a gas, explosive pressure buildup from boiling is not a risk, as happened in the catastrophic steam explosion at the Chernobyl accident. Failure of the reactor shutdown system to rapidly shutdown the reactor, or failure of natural circulation, was not considered in the design. In 1967 Chapelcross experienced a fuel melt due to restricted gas flow in an individual channel and, although this was dealt with by the station crew without major incident, this event had not been designed or planned for, and the radioactivity released was greater than anticipated during the station design.

In the older steel pressure vessel design, boilers and gas ducting are outside the concrete biological shield. Consequently this design emits a significant amount of direct gamma and neutron radiation, termed direct "shine", from the reactors. For example the most exposed members of the public living near Dungeness Magnox reactor in 2002[3] received 0.56 mSv, over half the International Commission on Radiological Protection recommended maximum radiation dose limit for the public, from direct "shine" alone. The doses from the Oldbury and Wylfa reactors, which have concrete pressure vessels which encapsulate the complete gas circuit, are much lower.

Reactors in use

Sizewell A Magnox nuclear power station

In all, 11 power stations totalling 26 units were built in the UK where the design originated. In addition, one was exported to Tokai Mura in Japan and another to Latina in Italy. North Korea also developed their own Magnox reactors, based on the UK design which was made public at an Atoms for Peace conference.

The first Magnox power station, Calder Hall, was the world's first nuclear power station to generate electrical power on an industrial scale.[2] First connection to the grid was on 27 August 1956, and the plant was officially opened by Queen Elizabeth II on 17 October 1956.[4] When the station closed on 31 March 2003, the first reactor had been in use for nearly 47 years.[5]

The first two stations (Calder Hall and Chapelcross) were originally owned by the UKAEA and primarily used in their early life to produce weapons-grade plutonium, with two fuel loads per year.[6] From 1964 they were mainly used on commercial fuel cycles and it was not until April 1995 that the UK Government announced that all production of plutonium for weapons purposes had ceased.[7]

The later and larger units were owned by CEGB and operated on commercial fuel cycles.

In operation it was found that there was significant oxidation of mild steel components by the high temperature carbon dioxide coolant, requiring a reduction in operating temperature and power output. For example the Latina reactor was derated in 1969 by 24%, from 210 MWe to 160 MWe, by the reduction of operating temperature from 390 to 360 Celsius.

As of 2007, just two Magnox power stations remain in operation; Oldbury and Wylfa, which will both close around 2010. Originally Oldbury was to close in 2008, but in an announcement on 18 December 2008 by the UK Nuclear Decommissioning Authority it was stated that the station would continue to operate for another two years, in order to raise funds to pay for decommissioning.[8]


Magnox is also the name of an alloy—mainly of magnesium with small amounts of aluminium and other metals—used in cladding unenriched uranium metal fuel with a non-oxidising covering to contain fission products. Magnox is short for Magnesium non-oxidising. This material has the advantage of a low neutron capture cross-section, but has two major disadvantages:

  • It limits the maximum temperature, and hence the thermal efficiency, of the plant.
  • It reacts with water, preventing long-term storage of spent fuel under water.

Magnox fuel incorporated cooling fins to provide maximum heat transfer despite low operating temperatures, making it expensive to produce. While the use of uranium metal rather than oxide made reprocessing more straightforward and therefore cheaper, the need to reprocess fuel a short time after removal from the reactor meant that the fission product hazard was severe. Expensive remote handling facilities were required to address this danger.

The term magnox may also loosely refer to:

  • Three North Korean reactors, all based on the declassified blueprints of the Calder Hall Magnox reactors:
  • Nine UNGG power reactors built in France, all now shut down. These were carbon dioxide-cooled, graphite reactors with natural uranium metal fuel, very similar in design and purpose to the British Magnox reactors except that the fuel cladding was magnesium-zirconium alloy.

The accepted term for all of these first-generation, carbon dioxide-cooled, graphite-moderated reactors, including the Magnox and UNGG, is GCR for Gas Cooled Reactor.

The Magnox was replaced in the British power station program by the Advanced gas-cooled reactor or AGR, which was derived from it. A key feature of the AGR was the replacement of magnox cladding to allow higher temperatures and greater thermal efficiency. Stainless steel cladding was adopted after many other alloys had been tried and rejected.


The Nuclear Decommissioning Authority (NDA) is responsible for the decommissioning of the UK Magnox power plants, at an estimated cost of £12.6 billion. There is currently debate about whether a 25 or 100 year decommissioning strategy should be adopted. After 80 years short-lifetime radioactive material in the defueled core would have decayed to the point that human access to the reactor structure would be possible, easing dismantling work. A shorter decommissioning strategy would require a fully robotic core dismantling technique.[9]

In addition the BNFL Sellafield site which, amongst other activities, reprocessed spent Magnox fuel in its B205 plant, has an estimated decommissioning cost of £31.5 billion. Magnox fuel is produced at Springfields near Preston; estimated decommissioning cost is £371 million. The total cost of decommissioning Magnox activities is likely to exceed £20 billion, averaging about £2 billion per productive reactor site.

Calder Hall was opened in 1956 as the world’s first commercial nuclear power station, and is a significant part of the UK’s industrial heritage. The NDA is considering whether to preserve Calder Hall Reactor 1 as a museum site.

All the UK's Magnox Reactor Sites (apart from Calder Hall) are operated by Magnox Electric, on behalf of the Nuclear Decommissioning Authority. In 2007, American nuclear fuel cycle service provider EnergySolutions acquired Reactor Sites Management Company (RSMC) from British Nuclear Fuels.

List of Magnox reactors in the UK

Magnox reactors exported from the UK

See also


External links



Up to date as of January 15, 2010

Definition from Wiktionary, a free dictionary

Wikipedia has an article on:


See also magnox



Abbreviation of magnesium non-oxidising




Magnox (plural Magnoxes)

  1. an early type of nuclear power station also used for the production of weapons-grade plutonium


Got something to say? Make a comment.
Your name
Your email address