The Full Wiki

Marine pollution: Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Did you know ...

More interesting facts on Marine pollution

Include this on your site/blog:


From Wikipedia, the free encyclopedia

While marine pollution can be obvious, as with the marine debris shown above, it is often the pollutants that cannot be seen that cause most harm.

Marine pollution occurs when harmful effects, or potentially harmful effects,can result from the entry into the ocean of chemicals, particles, industrial, agricultural and residential waste, noise, or the spread of invasive organisms. Most sources of marine pollution are land based. The pollution often comes from nonpoint sources such as agricultural runoff and wind blown debris.

Many potentially toxic chemicals adhere to tiny particles which are then taken up by plankton and benthos animals, most of which are either deposit or filter feeders. In this way, the toxins are concentrated upward within ocean food chains. Many particles combine chemically in a manner highly depletive of oxygen, causing estuaries to become anoxic.

When pesticides are incorporated into the marine ecosystem, they quickly become absorbed into marine food webs. Once in the food webs, these pesticides can cause mutations, as well as diseases, which can be harmful to humans as well as the entire food web.

Toxic metals can also be introduced into marine food webs. These can cause a change to tissue matter, biochemistry, behaviour, reproduction, and suppress growth in marine life. Also, many animal feeds have a high fish meal or fish hydrolysate content. In this way, marine toxins can be transferred to land animals, and appear later in meat and dairy products.



Parties to the MARPOL 73/78 convention on marine pollution

Although marine pollution has a long history, significant international laws to counter it were enacted in the twentieth century. Marine pollution was a concern during several United Nations Conferences on the Law of the Sea beginning in the 1950s. Most scientists believed that the oceans were so vast that they had unlimited ability to dilute, and thus render harmless, pollution.. In the late 1950s and early 1960s, there were several controversies about dumping radioactive waste off the coasts of the United States by companies licensed by the Atomic Energy Commission, into the Irish Sea from the British reprocessing facility at Windscale, and into the Mediterranean Sea by the French Commissariat à l'Energie Atomique. After the Mediterranean Sea controversy, for example, Jacques Cousteau became a worldwide figure in the campaign to stop marine pollution. Marine pollution made further international headlines after the 1967 crash of the oil tanker Torrey Canyon, and after the 1969 Santa Barbara oil spill off the coast of California. Marine pollution was a major area of discussion during the 1972 United Nations Conference on the Human Environment, held in Stockholm. That year also saw the signing of the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter, sometimes called the London Convention. The London Convention did not ban marine pollution, but it established black and gray lists for substances to be banned (black) or regulated by national authorities (gray). Cyanide and high-level radioactive waste, for example, were put on the black list. The London Convention applied only to waste dumped from ships, and thus did nothing to regulate waste discharged as liquids from pipelines.[1]

Pathways of pollution

Septic river.

There are many different ways to categorize, and examine the inputs of pollution into our marine ecosystems. Patin (n.d.) notes that generally there are three main types of inputs of pollution into the ocean: direct discharge of waste into the oceans, runoff into the waters due to rain, and pollutants that are released from the atmosphere.

One common path of entry by contaminants to the sea are rivers. The evaporation of water from oceans exceeds precipitation. The balance is restored by rain over the continents entering rivers and then being returned to the sea. The Hudson in New York State and the Raritan in New Jersey, which empty at the northern and southern ends of Staten Island, are a source of mercury contamination of zooplankton (copepods) in the open ocean. The highest concentration in the filter-feeding copepods is not at the mouths of these rivers but 70 miles south, nearer Atlantic City, because water flows close to the coast. It takes a few days before toxins are taken up by the plankton[2].

Pollution is often classed as point source or nonpoint source pollution. Point source pollution occurs when there is a single, identifiable, and localized source of the pollution. An example is directly discharging sewage and industrial waste into the ocean. Pollution such as this occurs particularly in developing nations. Nonpoint source pollution occurs when the pollution comes from ill-defined and diffuse sources. These can be difficult to regulate. Agricultural runoff and wind blown debris are prime examples.


Direct discharge

Acid mine drainage in the Rio Tinto River.

Pollutants enter rivers and the sea directly from urban sewerage and industrial waste discharges, sometimes in the form of hazardous and toxic wastes.

Inland mining for copper, gold. etc., is another source of marine pollution. Most of the pollution is simply soil, which ends up in rivers flowing to the sea. However, some minerals discharged in the course of the mining can cause problems, such as copper, a common industrial pollutant, which can interfere with the life history and development of coral polyps.[2] Mining has a poor environmental track record. For example, according to the United States Environmental Protection Agency, mining has contaminated portions of the headwaters of over 40% of watersheds in the western continental US.[3] Much of this pollution finishes up in the sea.

Land runoff

Surface runoff from farming, as well as urban runoff and runoff from the construction of roads, buildings, ports, channels, and harbours, can carry soil laden with carbon, nitrogen, phosphorus, and minerals. This nutrient-rich water can cause fleshy algae and phytoplankton to thrive in coastal areas, known as algal blooms, which have the potential to create hypoxic conditions by using all available oxygen.

Polluted runoff from roads and highways can be a significant source of water pollution in coastal areas. About 75 percent of the toxic chemicals that flow into Puget Sound are carried by stormwater that runs off paved roads and driveways, rooftops, yards and other developed land.[4]

Ship pollution

A cargo ship pumps ballast water over the side.

Ships can pollute waterways and oceans in many ways. Oil spills can have devastating effects. While being toxic to marine life, polycyclic aromatic hydrocarbons (PAHs), the components in crude oil, are very difficult to clean up, and last for years in the sediment and marine environment.[5]

Discharge of cargo residues from bulk carriers can pollute ports, waterways and oceans. In many instances vessels intentionally discharge illegal wastes despite foreign and domestic regulation prohibiting such actions. It has been estimated that container ships lose over 10,000 containers at sea each year (usually during storms).[6] Ships also create noise pollution that disturbs natural wildlife, and water from ballast tanks can spread harmful algae and other invasive species.[7]

Ballast water taken up at sea and released in port is a major source of unwanted exotic marine life. The invasive freshwater zebra mussels, native to the Black, Caspian and Azov seas, were probably transported to the Great Lakes via ballast water from a transoceanic vessel.[8] Meinesz believes that one of the worst cases of a single invasive species causing harm to an ecosystem can be attributed to a seemingly harmless jellyfish. Mnemiopsis leidyi, a species of comb jellyfish that spread so it now inhabits estuaries in many parts of the world. It was first introduced in 1982, and thought to have been transported to the Black Sea in a ship’s ballast water. The population of the jellyfish shot up exponentially and, by 1988, it was wreaking havoc upon the local fishing industry. “The anchovy catch fell from 204,000 tons in 1984 to 200 tons in 1993; sprat from 24,600 tons in 1984 to 12,000 tons in 1993; horse mackerel from 4,000 tons in 1984 to zero in 1993.”[7] Now that the jellyfish have exhausted the zooplankton, including fish larvae, their numbers have fallen dramatically, yet they continue to maintain a stranglehold on the ecosystem.

Invasive species can take over once occupied areas, facilitate the spread of new diseases, introduce new genetic material, alter underwater seascapes and jeopardize the ability of native species to obtain food. Invasive species are responsible for about $138 billion annually in lost revenue and management costs in the US alone.[9]

Atmospheric pollution

Graph linking atmospheric dust to various coral deaths across the Caribbean Sea and Florida[10]

Another pathway of pollution occurs through the atmosphere. Wind blown dust and debris, including plastic bags, are blown seaward from landfills and other areas. Dust from the Sahara moving around the southern periphery of the subtropical ridge moves into the Caribbean and Florida during the warm season as the ridge builds and moves northward through the subtropical Atlantic. Dust can also be attributed to a global transport from the Gobi and Taklamakan deserts across Korea, Japan, and the Northern Pacific to the Hawaiian Islands.[11] Since 1970, dust outbreaks have worsened due to periods of drought in Africa. There is a large variability in dust transport to the Caribbean and Florida from year to year;[12] however, the flux is greater during positive phases of the North Atlantic Oscillation.[13] The USGS links dust events to a decline in the health of coral reefs across the Caribbean and Florida, primarily since the 1970s.[14]

Climate change is raising ocean temperatures[15] and raising levels of carbon dioxide in the atmosphere. These rising levels of carbon dioxide are acidifying the oceans.[16] This, in turn, is altering aquatic ecosystems and modifying fish distributions,[17] with impacts on the sustainability of fisheries and the livelihoods of the communities that depend on them. Healthy ocean ecosystems are also important for the mitigation of climate change.[18]


Island with fringing reef in the Maldives. Coral reefs are dying around the world.[19]

The oceans are normally a natural carbon sink, absorbing carbon dioxide from the atmosphere. Because the levels of atmospheric carbon dioxide are increasing, the oceans are becoming more acidic.[20][21] The potential consequences of ocean acidification are not fully understood, but there are concerns that structures made of calcium carbonate may become vulnerable to dissolution, affecting corals and the ability of shellfish to form shells.[22].

Oceans and coastal ecosystems play an important role in the global carbon cycle and have removed about 25% of the carbon dioxide emitted by human activities between 2000 and 2007 and about half the anthropogenic CO2 released since the start of the industrial revolution. Rising ocean temperatures and ocean acidification means that the capacity of the ocean carbon sink will gradually get weaker,[23] giving rise to global concerns expressed in the Monaco[24] and Manado[25] Declarations.

A report from NOAA scientists published in the journal Science in May 2008 found that large amounts of relatively acidified water are upwelling to within four miles of the Pacific continental shelf area of North America. This area is a critical zone where most local marine life lives or is born. While the paper dealt only with areas from Vancouver to northern California, other continental shelf areas may be experiencing similar effects.[26]

A related issue is the methane clathrate reservoirs found under sediments on the ocean floors. These trap large amounts of the greenhouse gas methane, which ocean warming has the potential to release. In 2004 the global inventory of ocean methane clathrates was estimated to occupy between one and five million cubic kilometres.[27] If all these clathrates were to be spread uniformly across the ocean floor, this would translate to a thickness between three and fourteen metres.[28] This estimate corresponds to 500-2500 gigatonnes carbon (Gt C), and can be compared with the 5000 Gt C estimated for all other fossil fuel reserves.[27][29]


Polluted lagoon.
Effect of eutrophication on marine benthic life

Eutrophication is an increase in chemical nutrients, typically compounds containing nitrogen or phosphorus, in an ecosystem. It can result in an increase in the ecosystem's primary productivity (excessive plant growth and decay), and further effects including lack of oxygen and severe reductions in water quality, fish, and other animal populations.

The biggest culprit are rivers that empty into the ocean, and with it the many chemicals used as fertilizers in agriculture as well as waste from livestock and humans. An excess of oxygen depleting chemicals in the water can lead to hypoxia and the creation of a dead zone.[30]

Estuaries tend to be naturally eutrophic because land-derived nutrients are concentrated where runoff enters the marine environment in a confined channel. The World Resources Institute has identified 375 hypoxic coastal zones around the world, concentrated in coastal areas in Western Europe, the Eastern and Southern coasts of the US, and East Asia, particularly in Japan.[31] In the ocean, there are frequent red tide algae blooms[32] that kill fish and marine mammals and cause respiratory problems in humans and some domestic animals when the blooms reach close to shore.

In addition to land runoff, atmospheric anthropogenic fixed nitrogen can enter the open ocean. A study in 2008 found that this could account for around one third of the ocean’s external (non-recycled) nitrogen supply and up to three per cent of the annual new marine biological production.[33] It has been suggested that accumulating reactive nitrogen in the environment may have consequences as serious as putting carbon dioxide in the atmosphere.[34]

Plastic debris

A mute swan builds a nest using plastic garbage.

Marine debris is mainly discarded human rubbish which floats on, or is suspended in the ocean. Eighty percent of marine debris is plastic - a component that has been rapidly accumulating since the end of World War II.[35] The mass of plastic in the oceans may be as high as one hundred million metric tons.[36]

Discarded plastic bags, six pack rings and other forms of plastic waste which finish up in the ocean present dangers to wildlife and fisheries.[37] Aquatic life can be threatened through entanglement, suffocation, and ingestion.[38][39][40] Fishing nets, usually made of plastic, can be left or lost in the ocean by fishermen. Known as ghost nets, these entangle fish, dolphins, sea turtles, sharks, dugongs, crocodiles, seabirds, crabs, and other creatures, restricting movement, causing starvation, laceration and infection, and, in those that need to return to the surface to breathe, suffocation.[41]

Remains of an albatross containing ingested flotsam

Many animals that live on or in the sea consume flotsam by mistake, as it often looks similar to their natural prey.[42] Plastic debris, when bulky or tangled, is difficult to pass, and may become permanently lodged in the digestive tracts of these animals, blocking the passage of food and causing death through starvation or infection.[43][44]

Plastics accumulate because they don't biodegrade in the way many other substances do. They will photodegrade on exposure to the sun, but they do so properly only under dry conditions, and water inhibits this process.[45] In marine environments, photodegraded plastic disintegrates into ever smaller pieces while remaining polymers, even down to the molecular level. When floating plastic particles photodegrade down to zooplankton sizes, jellyfish attempt to consume them, and in this way the plastic enters the ocean food chain. [46] [47] Many of these long-lasting pieces end up in the stomachs of marine birds and animals,[48] including sea turtles, and black-footed albatross.[49]

Marine debris on Kamilo Beach, Hawaii, washed up from the Great Pacific Garbage Patch

Plastic debris tends to accumulate at the centre of ocean gyres. In particular, the Great Pacific Garbage Patch has a very high level of plastic particulate suspended in the upper water column. In samples taken in 1999, the mass of plastic exceeded that of zooplankton (the dominant animal life in the area) by a factor of six.[35][50] Midway Atoll, in common with all the Hawaiian Islands, receives substantial amounts of debris from the garbage patch. Ninety percent plastic, this debris accumulates on the beaches of Midway where it becomes a hazard to the bird population of the island. Midway Atoll is home to two-thirds (1.5 million) of the global population of Laysan Albatross.[51] Nearly all of these albatross have plastic in their digestive system[52] and one-third of their chicks die.[53]

Toxic additives used in the manufacture of plastic materials can leach out into their surroundings when exposed to water. Waterborne hydrophobic pollutants collect and magnify on the surface of plastic debris,[36] thus making plastic far more deadly in the ocean than it would be on land.[35] Hydrophobic contaminants are also known to bioaccumulate in fatty tissues, biomagnifying up the food chain and putting pressure on apex predators. Some plastic additives are known to disrupt the endocrine system when consumed, others can suppress the immune system or decrease reproductive rates.[50] Floating debris can also absorb persistent organic pollutants from seawater, including PCBs, DDT and PAHs.[54] Aside from toxic effects,[55] when ingested some of these are mistaken by the animal brain for estradiol, causing hormone disruption in the affected wildlife.[49]


Apart from plastics, there are particular problems with other toxins that do not disintegrate rapidly in the marine environment. Examples of persistent toxins are PCBs, DDT, pesticides, furans, dioxins, phenols and radioactive waste. Heavy metals are metallic chemical elements that have a relatively high density and are toxic or poisonous at low concentrations. Examples are mercury, lead, nickel, arsenic and cadmium. Such toxins can accumulate in the tissues of many species of aquatic life in a process called bioaccumulation. They are also known to accumulate in benthic environments, such as estuaries and bay muds: a geological record of human activities of the last century.

Specific examples
  • Chinese and Russian industrial pollution such as phenols and heavy metals in the Amur River have devastated fish stocks and damaged its estuary soil.[56]
  • Acute and chronic pollution events have been shown to impact southern California kelp forests, though the intensity of the impact seems to depend on both the nature of the contaminants and duration of exposure.[57][58][59][60][61]
  • Due to their high position in the food chain and the subsequent accumulation of heavy metals from their diet, mercury levels can be high in larger species such as bluefin and albacore. As a result, in March 2004 the United States FDA issued guidelines recommending that pregnant women, nursing mothers and children limit their intake of tuna and other types of predatory fish.[62]
  • Some shellfish and crabs can survive polluted environments, accumulating heavy metals or toxins in their tissues. For example, mitten crabs have a remarkable ability to survive in highly modified aquatic habitats, including polluted waters.[63] The farming and harvesting of such species needs careful management if they are to be used as a food.[64][65]
  • Surface runoff of pesticides can alter the gender of fish species genetically, transforming male into female fish.[66]
  • In 2005, the 'Ndrangheta, an Italian mafia syndicate, was accused of sinking at least 30 ships loaded with toxic waste, much of it radioactive. This has led to widespread investigations into radioactive waste disposal rackets.[68]

Noise pollution

Marine life can be susceptible to noise or sound pollution from sources such as passing ships, oil exploration seismic surveys, and naval low-frequency active sonar. Sound travels more rapidly and over larger distances in the sea than in the atmosphere. Marine animals, such as cetaceans, often have weak eyesight, and live in a world largely defined by acoustic information. This applies also to many deeper sea fish, who live in a world of darkness.[69] Between 1950 and 1975, ambient noise in the ocean increased by about ten decibels (that is a ten-fold increase).[70]

Noise also makes species communicate louder, which is called the Lombard vocal response.[71] Whale songs are longer when submarine-detectors are on.[72] If creatures don't "speak" loud enough, their voice can be masked by anthropogenic sounds. These unheard voices might be warnings, finding of prey, or preparations of net-bubbling. When one species begins speaking louder, it will mask other specie voices, causing the whole ecosystem to eventually speak louder.[73]

According to the oceanographer Sylvia Earle, "Undersea noise pollution is like the death of a thousand cuts. Each sound in itself may not be a matter of critical concern, but taken all together, the noise from shipping, seismic surveys, and military activity is creating a totally different environment than existed even 50 years ago. That high level of noise is bound to have a hard, sweeping impact on life in the sea."[74]

Adaptation and mitigation

Aerosol can polluting a beach.

Much anthropogenic pollution ends up in the ocean. Bjorn Jenssen (2003) notes in his article, “Anthropogenic pollution may reduce biodiversity and productivity of marine ecosystems, resulting in reduction and depletion of human marine food resources” (p. A198). There are two ways the overall level of this pollution can be mitigated: either the human population is reduced, or a way is found to reduce the ecological footprint left behind by the average human. If the second way is not adopted, then the first way may be imposed as world ecosystems falter.

The second way is for humans, individually, to pollute less. That requires social and political will, together with a shift in awareness so more people respect the environment and are less disposed to abuse it. At an operational level, regulations, and international government participation is needed. It is often very difficult to regulate marine pollution because pollution spreads over international barriers, thus making regulations hard to create as well as enforce.

Perhaps the most important strategy for reducing marine pollution is education. Most are unaware of the sources, and harmful effects of marine pollution, and therefore little is done to address the situation. In order to inform the population of all the facts, in depth research must be done to provide the full scale of the situation. Then this information must be made public.

As expressed in Daoji and Dag’s research,[75] one of the reasons why environmental concern is lacking among the Chinese is because the public awareness is low and therefore should be targeted. Likewise, regulation, based upon such in-depth research should be employed. In California, such regulations have already been put in place to protect Californian coastal waters from agricultural runoff. This includes the California Water Code, as well as several voluntary programs. Similarly, in India, several tactics have been employed that help reduce marine pollution, however, they do not significantly target the problem. In Chennai city, India, sewage has been dumped further into open waters. Due to the mass of waste being deposited, open-ocean is best for diluting, and dispersing pollutants, thus making them less harmful to marine ecosystems.

See also


  1. ^ Hamblin, Jacob Darwin (2008) Poison in the Well: Radioactive Waste in the Oceans at the Dawn of the Nuclear Age. Rutgers University Press. ISBN 978-0813542201
  2. ^ Emma Young (2003). "Copper decimates coral reef spawning". Retrieved 26 August 2006. 
  3. ^ Environmental Protection Agency. "Liquid Assets 2000: Americans Pay for Dirty Water". Retrieved 2007-01-23. 
  4. ^ Washington State Department of Ecology. “Control of Toxic Chemicals in Puget Sound, Phase 2: Development of Simple Numerical Models", 2008
  5. ^ Panetta, LE (Chair) (2003) America's living oceans: charting a course for sea change [Electronic Version, CD] Pew Oceans Commission.
  6. ^ Janice Podsada (19 June 2001). "Lost Sea Cargo: Beach Bounty or Junk?". National Geographic News. Retrieved 2008-04-08. 
  7. ^ a b Meinesz, A. (2003) Deep Sea Invasion: The Impact of Invasive Species PBS: NOVA. Retrieved November 26, 2009
  8. ^ Aquatic invasive species. A Guide to Least-Wanted Aquatic Organisms of the Pacific Northwest. 2001. University of Washington. [1]
  9. ^ Pimentel, D.; R. Zuniga and D., Morrison (2005). "Update on the environmental and economic costs associated with alien-invasive species in the United States.". Ecological Economics 52: 273–288. 
  10. ^ Coral Mortality and African Dust: Barbados Dust Record: 1965-1996 US Geological Survey. Retrieved 10 December 2009.
  11. ^ Duce, R.A., Unni, C.K., Ray, B.J., Prospero, J.M., Merrill, J.T. 1980. Long-range atmospheric transport of soil dust from Asia to the tropical North Pacific:Temporal variability. Science 209:1522–1524.
  12. ^ Study Says African Dust Affects Climate in U.S., Caribbean. Retrieved on 10 June 2007.
  13. ^ Prospero, J.M., Nees, R.T. 1986. Impact of the North African drought and El Niño on mineral dust in the Barbados trade winds. Nature 320:735–738.
  14. ^ U. S. Geological Survey. Coral Mortality and African Dust. Retrieved on 10 June 2007.
  15. ^ Observations: Oceanic Climate Change and Sea Level In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (15MB).
  16. ^ Doney, S. C. (2006) "The Dangers of Ocean Acidification" Scientific American, March 2006.
  17. ^ Cheung, W.W.L., et al. (2009) "Redistribution of Fish Catch by Climate Change. A Summary of a New Scientific Analysis" Pew Ocean Science Series. Oct 2009.
  18. ^ PACFA (2009) Fisheries and Aquaculture in a Changing Climate
  19. ^ Coral reefs around the world, 2 September 2009.
  20. ^ Orr, James C.; Fabry, Victoria J.; Aumont, Olivier; Bopp, Laurent; Doney, Scott C.; Feely, Richard A. et al. (2005). "Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms" (PDF). Nature 437 (7059): 681–686. doi:10.1038/nature04095. ISSN 0028-0836. 
  21. ^ Key, R.M.; Kozyr, A.; Sabine, C.L.; Lee, K.; Wanninkhof, R.; Bullister, J.; Feely, R.A.; Millero, F.; Mordy, C. and Peng, T.-H. (2004). "A global ocean carbon climatology: Results from GLODAP". Global Biogeochemical Cycles 18: GB4031. doi:10.1029/2004GB002247. ISSN 0886-6236. 
  22. ^ Raven, J. A. et al. (2005). Ocean acidification due to increasing atmospheric carbon dioxide. Royal Society, London, UK.
  23. ^ UNEP, FAO, IOC (2009) Blue Carbon. The role of healthy oceans in binding carbon
  24. ^ Monaco Declaration and Ocean Acidification A Summary for Policymakers from the Second Symposium on the Ocean in a High-CO2 World.] Intergovernmental Oceanographic Commission of UNESCO, International Geosphere-Biosphere Programme, Marine Environment Laboratories (MEL) of the International Atomic Energy Agency, Scientific Committee on Oceanic Research. 2008.
  25. ^ Manado Ocean Declaration World Ocean Conference Ministerial/High Level Meeting. Manado, Indonesia, 11-14 May 2009.
  26. ^ Feely, Richard; Christopher L. Sabine, J. Martin Hernandez-Ayon, Debby Ianson, Burke Hales. (2008). "Evidence for Upwelling of Corrosive "Acidified" Seawater onto the Continental Shelf". Science 10. 
  27. ^ a b Milkov, AV (2004). "Global estimates of hydrate-bound gas in marine sediments: how much is really out there?". Earth-Sci Rev 66 (3-4): 183–197. doi:10.1016/j.earscirev.2003.11.002. 
  28. ^ The oceans occupy 361 million sq km
  29. ^ USGS World Energy Assessment Team, 2000. US Geological Survey world petroleum assessment 2000––description and results. USGS Digital Data Series DDS-60.
  30. ^ Gerlach: Marine Pollution, Springer, Berlin (1975)
  31. ^ Selman, Mindy (2007) Eutrophication: An Overview of Status, Trends, Policies, and Strategies. World Resources Institute.
  32. ^ "The Gulf of Mexico Dead Zone and Red Tides". Retrieved 2006-12-27. 
  33. ^ Duce, R A and 29 others (2008) Impacts of Atmospheric Anthropogenic Nitrogen on the Open Ocean Science. Vol 320, pp 893–89
  34. ^ Addressing the nitrogen cascade Eureka Alert, 2008.
  35. ^ a b c Alan Weisman (2007). The World Without Us. St. Martin's Thomas Dunne Books. ISBN 0312347294. 
  36. ^ a b "Plastic Debris: from Rivers to Sea" (PDF). Algalita Marine Research Foundation. Retrieved 2008-05-29. 
  37. ^ "Research | AMRF/ORV Alguita Research Projects" Algalita Marine Research Foundation. Macdonald Design. Accessed 19 May 2009.
  38. ^ UNEP (2005) Marine Litter: An Analytical Overview
  39. ^ Six pack rings hazard to wildlife
  40. ^ Louisiana Fisheries - Fact Sheets
  41. ^ "'Ghost fishing' killing seabirds". BBC News. 28 June 2007. Retrieved 2008-04-01. 
  42. ^ Kenneth R. Weiss (2 August 2006). "Plague of Plastic Chokes the Seas". Los Angeles Times. Retrieved 2008-04-01. 
  43. ^ Charles Moore (November 2003). "Across the Pacific Ocean, plastics, plastics, everywhere.". Natural History. Retrieved 2008-04-05. 
  44. ^ Sheavly & Register, 2007, p. 3.
  45. ^ Alan Weisman (Summer 2007). "Polymers Are Forever". Orion magazine. Retrieved 2008-07-01. 
  46. ^ Thompson, Richard C. (7 May 2004), "Lost at Sea: Where Is All the Plastic?,", Science 304 (5672): 843, doi:10.1126/science.1094559,, retrieved 2008-07-19 
  47. ^ Moore, Charles; Moore, S. L.; Leecaster, M. K.; Weisberg, S. B. (4), "A Comparison of Plastic and Plankton in the North Pacific Central Gyre" (PDF), Marine Pollution Bulletin 42 (12): 1297–1300, 2001-12-01, doi:10.1016/S0025-326X(01)00114-X, 
  48. ^ Moore, Charles (November 2003). "Across the Pacific Ocean, plastics, plastics, everywhere". Natural History Magazine. 
  49. ^ a b Moore, Charles (2002-10-02). "Great Pacific Garbage Patch". Santa Barbara News-Press. 
  50. ^ a b "Plastics and Marine Debris". Algalita Marine Research Foundation. 2006. Retrieved 2008-07-01. 
  51. ^
  52. ^ Chris Jordan (November 11, 2009). "Midway: Message from the Gyre". Retrieved 2009-11-13. 
  53. ^
  54. ^ Rios, L.M.; Moore, C. and Jones, P.R. (2007). "Persistent organic pollutants carried by Synthetic polymers in the ocean environment". Marine Pollution Bulletin 54: 1230–1237. doi:10.1016/j.marpolbul.2007.03.022. 
  55. ^ Tanabe, S.; Watanabe, M., Minh, T.B., Kunisue, T., Nakanishi, S., Ono, H. and Tanaka, H. (2004). "PCDDs, PCDFs, and coplanar PCBs in albatross from the North Pacific and Southern Oceans: Levels, patterns, and toxicological implications". Environmental Science & Technology 38: 403–413. doi:10.1021/es034966x. 
  56. ^ "Indigenous Peoples of the Russian North, Siberia and Far East: Nivkh" by Arctic Network for the Support of the Indigenous Peoples of the Russian Arctic
  57. ^ Grigg, R.W. and R.S. Kiwala. 1970. Some ecological effects of discharged wastes on marine life. California Department of Fish and Game 56: 145-155.
  58. ^ Stull, J.K. 1989. Contaminants in sediments near a major marine outfall: history, effects and future. OCEANS ’89 Proceedings 2: 481-484.
  59. ^ North, W.J., D.E. James and L.G. Jones. 1993. History of kelp beds (Macrocystis) in Orange and San Diego Counties, California. Hydrobiologia 260/261: 277-283.
  60. ^ Tegner, M.J., P.K. Dayton, P.B. Edwards, K.L. Riser, D.B. Chadwick, T.A. Dean and L. Deysher. 1995. Effects of a large sewage spill on a kelp forest community: catastrophe or disturbance? Marine Environmental Research 40: 181-224.
  61. ^ Carpenter, S.R., R.F. Caraco, D.F. Cornell, R.W. Howarth, A.N. Sharpley and V.N. Smith. 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559-568.
  62. ^ "What You Need to Know About Mercury in Fish and Shellfish". 2004-03. Retrieved 2007-05-19. 
  63. ^ Stephen Gollasch (2006-03-03). "Ecology of Eriocheir sinensis". 
  64. ^ Hui, Clifford A. et al. (2005). "Mercury burdens in Chinese mitten crabs (Eriocheir sinensis) in three tributaries of southern San Francisco Bay, California, USA". Environmental Pollution (Elsevier) 133 (3): 481–487. doi:10.1016/j.envpol.2004.06.019. 
  65. ^ Silvestre, F. et al. (2004). "Uptake of cadmium through isolated perfused gills of the Chinese mitten crab, Eriocheir sinensis". Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology (Elsevier) 137 (1): 189–196. doi:10.1016/S1095-6433(03)00290-3. 
  66. ^ Science News. "DDT treatment turns male fish into mothers." 2000-02-05. (By subscription only.)
  67. ^ Perez-Lopez et al. (2006)
  68. ^ (Italian) Parla un boss: Così lo Stato pagava la 'ndrangheta per smaltire i rifiuti tossici, by Riccardo Bocca, L’Espresso, August 5, 2005
  69. ^ Noise pollution Retrieved 24 October 2009.
  70. ^ Ross, (1993) On Ocean Underwater Ambient Noise. Institute of Acoustics Bulletin, St Albans, Herts, UK: Institute of Acoustics, 18.
  71. ^ Glossary Discovery of Sounds in the Sea. Retrieved 23 December 2009.
  72. ^ Fristrup KM, Hatch LT and Clark CW (2003) Variation in humpback whale (Megaptera novaeangliae) song length in relation to low-frequency sound broadcasts Acoustical Society of America Journal, 113 (6) 3411-3424.
  73. ^ Effects of Sound on Marine Animals Discovery of Sounds in the Sea. Retrieved 23 December 2009.
  74. ^ Natural Resources Defense Council Press Release (1999) Sounding the Depths: Supertankers, Sonar, and the Rise of Undersea Noise, Executive Summary. New York, N.Y.:
  75. ^ Daoji & Dag (2004)


  • Ahn, YH; Hong, GH; Neelamani, S; Philip, L and Shanmugam, P (2006) Assessment of Levels of coastal marine pollution of Chennai city, southern India. Water Resource Management, 21(7), 1187-1206.
  • Daoji, L and Dag, D (2004) Ocean pollution from land-based sources: East China sea. AMBIO – A Journal of the Human Environment, 33(1/2), 107-113.
  • Dowrd, BM; Press, D and Los Huertos, M (2008) Agricultural non-point sources: water pollution policy: The case of California’s central coast. Agriculture, Ecosystems & Environment, 128(3), 151-161.
  • Laws, Edward A (2000) Aquatic Pollution John Wiley and Sons. ISBN 9780471348757
  • Sheavly, SB and Register, KM (2007) Marine debris and plastics: Environmental concerns, sources, impacts and solutions. Journal of Polymers & the Environment, 15(4), 301-305.
  • Slater, D (2007) Affluence and effluents. Sierra 92(6), 27
  • UNEP (2007) Land-based Pollution in the South China Sea. UNEP/GEF/SCS Technical Publication No 10.

External links


Got something to say? Make a comment.
Your name
Your email address