Mathematical physics is the scientific discipline concerned with the interface of mathematics and physics. The Journal of Mathematical Physics defines it as: "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories."^{[1]}
Contents 
There are several distinct branches of mathematical physics, and these roughly correspond to particular historical periods. The theory of partial differential equations (and the related areas of variational calculus, Fourier analysis, potential theory, and vector analysis) are perhaps most closely associated with mathematical physics. These were developed intensively from the second half of the eighteenth century (by, for example, D'Alembert, Euler, and Lagrange) until the 1930s. Physical applications of these developments include hydrodynamics, celestial mechanics, elasticity theory, acoustics, thermodynamics, electricity, magnetism, and aerodynamics.
The theory of atomic spectra (and, later, quantum mechanics) developed almost concurrently with the mathematical fields of linear algebra, the spectral theory of operators, and more broadly, functional analysis. These constitute the mathematical basis of another branch of mathematical physics.
The special and general theories of relativity require a rather different type of mathematics. This was group theory: and it played an important role in both quantum field theory and differential geometry. This was, however, gradually supplemented by topology in the mathematical description of cosmological as well as quantum field theory phenomena.
Statistical mechanics forms a separate field, which is closely related with the more mathematical ergodic theory and some parts of probability theory.
There are increasing interactions between combinatorics and physics particularly statistical physics.
The usage of the term 'Mathematical physics' is sometimes idiosyncratic. Certain parts of mathematics that initially arose from the development of physics are not considered parts of mathematical physics, while other closely related fields are. For example, ordinary differential equations and symplectic geometry are generally viewed as purely mathematical disciplines, whereas dynamical systems and Hamiltonian mechanics belong to mathematical physics.
One of the earliest antecedents of mathematical physics was the eleventh century mathematician, Ibn alHaytham [965–1039], known in the West as Alhazen. It has been suggested that his conceptions of mathematical models and of the role they play in his theory of sense perception, as seen in his Book of Optics (1021), laid the foundations of what was to become mathematical physics.^{[2]} Other notable mathematical physicists at the time included Abū Rayhān alBīrūnī [973–1048] and AlKhazini [fl. 1115–1130], who introduced algebraic and fine calculation techniques into the fields of statics and dynamics.^{[3]}
The great seventeenth century English physicist and mathematician, Isaac Newton [1642–1727], developed a wealth of new mathematics (for example, calculus and several numerical methods (most notably Newton's method) to solve problems in physics. Other important mathematical physicists of the seventeenth century included the Dutchman Christiaan Huygens [1629–1695] (famous for suggesting the wave theory of light), and the German Johannes Kepler [1571–1630] (Tycho Brahe's assistant, and discoverer of the equations for planetary motion/orbit).
In the eighteenth century, two of the great innovators of mathematical physics were Swiss: Daniel Bernoulli [1700–1782] (for contributions to fluid dynamics, and vibrating strings), and, more especially, Leonhard Euler [1707–1783], (for his work in variational calculus, dynamics, fluid dynamics, and many other things). Another notable contributor was the Italianborn Frenchman, JosephLouis Lagrange [1736–1813] (for his work in mechanics and variational methods).
In the late eighteenth and early nineteenth centuries, important French figures were PierreSimon Laplace [1749–1827] (in mathematical astronomy, potential theory, and mechanics) and Siméon Denis Poisson [1781–1840] (who also worked in mechanics and potential theory). In Germany, both Carl Friedrich Gauss [1777–1855] (in magnetism) and Carl Gustav Jacobi [1804–1851] (in the areas of dynamics and canonical transformations) made key contributions to the theoretical foundations of electricity, magnetism, mechanics, and fluid dynamics.
Gauss (along with Euler) is considered by many to be one of the three greatest mathematicians of all time. His contributions to nonEuclidean geometry laid the groundwork for the subsequent development of Riemannian geometry by Bernhard Riemann [1826–1866]. As we shall see later, this work is at the heart of general relativity.
The nineteenth century also saw the Scot, James Clerk Maxwell [1831–1879], win renown for his four equations of electromagnetism, and his countryman, Lord Kelvin [1824–1907] make substantial discoveries in thermodynamics. Among the English physics community, Lord Rayleigh [1842–1919] worked on sound; and George Gabriel Stokes [1819–1903] was a leader in optics and fluid dynamics; while the Irishman William Rowan Hamilton [1805–1865] was noted for his work in dynamics. The German Hermann von Helmholtz [1821–1894] is best remembered for his work in the areas of electromagnetism, waves, fluids, and sound. In the U.S.A., the pioneering work of Josiah Willard Gibbs [1839–1903] became the basis for statistical mechanics. Together, these men laid the foundations of electromagnetic theory, fluid dynamics and statistical mechanics.
The late nineteenth and the early twentieth centuries saw the birth of special relativity. This had been anticipated in the works of the Dutchman, Hendrik Lorentz [1853–1928], with important insights from JulesHenri Poincaré [1854–1912], but which were brought to full clarity by Albert Einstein [1879–1955]. Einstein then developed the invariant approach further to arrive at the remarkable geometrical approach to gravitational physics embodied in general relativity. This was based on the nonEuclidean geometry created by Gauss and Riemann in the previous century.
Einstein's special relativity replaced the Galilean transformations of space and time with Lorentz transformations in four dimensional Minkowski spacetime. His general theory of relativity replaced the flat Euclidean geometry with that of a Riemannian manifold, whose curvature is determined by the distribution of gravitational matter. This replaced Newton's scalar gravitational force by the Riemann curvature tensor.
The other great revolutionary development of the twentieth century has been quantum theory, which emerged from the seminal contributions of Max Planck [1856–1947] (on black body radiation) and Einstein's work on the photoelectric effect. This was, at first, followed by a heuristic framework devised by Arnold Sommerfeld [1868–1951] and Niels Bohr [1885–1962], but this was soon replaced by the quantum mechanics developed by Max Born [1882–1970], Werner Heisenberg [1901–1976], Paul Dirac [1902–1984], Erwin Schrödinger [1887–1961], and Wolfgang Pauli [1900–1958]. This revolutionary theoretical framework is based on a probabilistic interpretation of states, and evolution and measurements in terms of selfadjoint operators on an infinite dimensional vector space (Hilbert space, introduced by David Hilbert [1862–1943]). Paul Dirac, for example, used algebraic constructions to produce a relativistic model for the electron, predicting its magnetic moment and the existence of its antiparticle, the positron.
Later important contributors to twentieth century mathematical physics include Satyendra Nath Bose [1894–1974], Julian Schwinger [1918–1994], SinItiro Tomonaga [1906–1979], Richard Feynman [1918–1988], Freeman Dyson [1923– ], Hideki Yukawa [1907–1981], Roger Penrose [1931– ], Stephen Hawking [1942– ], and Edward Witten [1951– ].
The term 'mathematical' physics is also sometimes used in a special sense, to denote research aimed at studying and solving problems inspired by physics within a mathematically rigorous framework. Mathematical physics in this sense covers a very broad area of topics with the common feature that they blend pure mathematics and physics. Although related to theoretical physics, 'mathematical' physics in this sense emphasizes the mathematical rigour of the same type as found in mathematics. On the other hand, theoretical physics emphasizes the links to observations and experimental physics which often requires theoretical physicists (and mathematical physicists in the more general sense) to use heuristic, intuitive, and approximate arguments. Such arguments are not considered rigorous by mathematicians. Arguably, rigorous mathematical physics is closer to mathematics, and theoretical physics is closer to physics.
Such mathematical physicists primarily expand and elucidate physical theories. Because of the required rigor, these researchers often deal with questions that theoretical physicists have considered to already be solved. However, they can sometimes show (but neither commonly nor easily) that the previous solution was incorrect.
The field has concentrated in three main areas: (1) quantum field theory, especially the precise construction of models; (2) statistical mechanics, especially the theory of phase transitions; and (3) nonrelativistic quantum mechanics (Schrödinger operators), including the connections to atomic and molecular physics.
The effort to put physical theories on a mathematically rigorous footing has inspired many mathematical developments. For example, the development of quantum mechanics and some aspects of functional analysis parallel each other in many ways. The mathematical study of quantum statistical mechanics has motivated results in operator algebras. The attempt to construct a rigorous quantum field theory has brought about progress in fields such as representation theory. Use of geometry and topology plays an important role in string theory. The above are just a few examples. An examination of the current research literature would undoubtedly give other such instances.

The English used in this article or section may not be easy for everybody to understand. You can help Wikipedia by making this page or section simpler. 
In applied mathematics, a branch of mathematics, mathematical physics refers to the knowledge made up of equations and ideas which scientists look to for assistance in modeling, describing, or solving problems in physics or related areas. These equations^{[1]} and ideas are derived from areas of pure mathematics. The equations form a consistent structure. ^{[2]} An example of a socalled structure is a noncommutative space.
Contents 
There are many teachers that specialize in mathematical physics, one is Edward Witten, pictured here. Others include:
Practicioners includes those who develop and apply mathematical physics.
