Movable cellular automaton: Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Encyclopedia

From Wikipedia, the free encyclopedia

MCA friction net.gif

The Movable cellular automaton (MCA) method is a method in computational solid mechanics based on the discrete concept. It provides advantages both of classical cellular automaton and discrete element methods. Important advantage of the МСА method is a possibility of direct simulation of materials fracture including damage generation, crack propagation, fragmentation and mass mixing. It is difficult to simulate these processes by means of continuum mechanics methods (For example: finite element method, finite difference method, etc.), so some new concepts like peridynamics is required. Discrete element method is very effective to simulate granular materials, but mutual forces among movable cellular automata provides simulating solids behavior. If size of automaton will be close to zero then MCA behavior becomes like classical continuum mechanics methods.

Contents

Keystone of the movable cellular automaton method

MCA elements.png

In framework of the MCA approach an object under modeling is considered as a set of interacting elements/automata. The dynamics of the set of automata are defined by their mutual forces and rules for their relationships. This system exists and operates in time and space. Its evolution in time and space is governed by the equations of motion. The mutual forces and rules for inter-elements relationships are defined by the function of the automaton response. This function has to be specified for each automaton. Due to mobility of automata the following new parameters of cellular automata have to be included into consideration: Ri – radius-vector of automaton; Vi – velocity of automaton; ωi – rotation velocity of automaton; θi – rotation vector of automaton; mi – mass of automaton; Ji – moment of inertia of automaton.

New concept: neighbours

The new concept of the MCA method is based on the introducing of the state of the pair of automata (relation of interacting pairs of automata) in addition to the conventional one – the state of a separate automaton. Note that the introduction of this definition allows to go from the static net concept to the concept of neighbours. As a result of this, the automata have the ability to change their neighbors by switching the states (relationships) of the pairs.

MCA neighbors.gif

Definition of the parameter of pair state

The introducing of new type of states leads to new parameter to use it as criteria for switching relationships. It is defined as an automaton overlapping parameters hij. So the relationship of the cellular automata is characterised by the value of their overlapping.

MCA sh1.gif MCA sh2.gif

The initial structure is formed by setting up certain relationships among each pair of neighboring elements.

Criterion of switching of the state of pair relationships

In contrast to the classical cellular automaton method in the MCA method not only a single automaton but also a relationship of pair of automata can be switched. According with the bistable automata concept there are two types of the pair states (relationships):

linked – both automata belong to a solid
unlinked – each automaton of the pair belongs to different bodies or parts of damaged body.


So the changing of the state of pair relationships is controlled by relative movements of the automata and the media formed by such pairs can be considered as bistable media. MCA switch.gif

Equations of MCA motion

MCA neighbour in pair.png

The evolution of MCA media is described by the following equations of motion for translation:

{d^2 h^{ij} \over dt^2} = \left( {1 \over m^i} + {1 \over m^j} \right) p^{ij} + \sum_{k\neq j} C(ij,ik) \psi(\alpha_{ij,ik}) {1 \over m^i} p^{ik} + \sum_{\ell \neq i} C(ij,j\ell) \psi(\alpha_{ij,j\ell}) {1 \over m^j} p^{j\ell}

Here mi is the mass of automaton i, pij is central force acting between automata i and j, C(ij,ik) is certain coefficient associated with transferring the h parameter from pair ij to pair ik, ψ(αij,ik) is angle between directions ij and ik.

Due to finite size of movable automata the rotation effects have to be taken into account. The equations of motion for rotation can be written as follows:

{d^2 \theta^{ij} \over dt^2} = \left( {q^{ij} \over J^i} + {q^{ji} \over J^j} \right) \tau^{ij} + \sum_{k\neq j} S(ij,ik) {q^{ik} \over J^i} \tau^{ik} + \sum_{l\neq j} S(ij,jl) {q^{jl} \over J^j} \tau^{jl}

Here Θij is the angle of relative rotation (it is a switching parameter like hij for translation), qij is the the distance from center of automaton i to contact point of automaton j (moment arm), τij is the pair tangential interaction, S(ij,ik) is certain coefficient associated with transferring the Θ parameter from one pair to other (it is similar to C(ij,ik) from the equation for translation).

It should be noted that these equations are completely similarly to the equations of motion for the many – particle approach.

Definition of deformation in pair of automata

MCA Deformation in Pair of Automata.gif

Translation of the pair automata The dimensionless deformation parameter for translation of the i j automata pair can be presented as:

 \varepsilon^{ij} = {h^{ij} \over r_{0}^{ij}} = { \left( q^{ij} + q^{ji} \right) - \left( d^{i} + d^{j} \right) \big / 2 \over \left( d^{i} + d^{j} \right) \big / 2 }

In this case:

\left( \Delta{\varepsilon^{i(j)}} + \Delta{\varepsilon^{j(i)}} \right) { \left( d^{i} + d^{j} \right) \over 2} = V_{n}^{ij} \Delta{t}

where Δt time step, Vnij – relative velocity.

Rotation of the pair automata can be calculated by analogy with the last translation relationships.

Modeling of irreversible deformation in the MCA method

MCA Irreversible Deformation.gif

The εij parameter is used as a measure of deformation of automaton i under its interaction with automaton j. Where qij – is a distance from the center af automaton i to its contact point with automaton j; Ri = di/2 (di – is the size of automaton i).

There are two types of the response function of automata:

MCA response function of automata.gif

As an example the titanium specimen under cyclic loading (tension – compression) is considered. The loading diagram is shown in the next figure:

Scheme of loading Loading diagram
MCA cyclic schem.gif MCA cyclic diag.gif
(Red marks are the experimental data)

Advantages of MCA method

Due to mobility of each automaton the MCA method allows to take into account directly such actions as:

  • mass mixing
  • penetration effects
  • chemical reactions
  • intensive deformation
  • phase transformations
  • accumulation of damages
  • fragmentation and fracture
  • cracks generation and development

Using boundary conditions of different types (fixed, elastic, viscous-elastic, etc.) it is possible to imitate different properties of surrounding medium, containing the simulated system. It is possible to model different modes of mechanical loading (tension, compression, shear strain, etc.) by setting up additional conditions at the boundaries.

References

Software

  • MCA software package
  • Program for simulation of materials in discrete-continious approach «FEM+MCA»: Number of government registration in applied-research fund of algorithms and programs (AFAP): 50208802297 / Smolin A.Y., Zelepugin S.A., Dobrynin S.A.; applicant and development center is Tomsk government university. – register date 28.11.2008; certificate AFAP N 11826 date 01.12.2008.

See also








Got something to say? Make a comment.
Your name
Your email address
Message