Multiplication is the mathematical operation of scaling one number by another. It is one of the four basic operations in elementary arithmetic (the others being addition, subtraction and division).
Multiplication is defined for whole numbers in terms of repeated addition; for example, 3 multiplied by 4 (often said as "3 times 4") can be calculated by adding 4 copies of 3 together:
Multiplication of rational numbers (fractions) and real numbers is defined by systematic generalization of this basic idea.
Multiplication can also be visualized as counting objects arranged in a rectangle (for whole numbers) or as finding the area of a rectangle whose sides have given lengths (for numbers generally). The inverse of multiplication is division: as 3 times 4 is equal to 12, so 12 divided by 3 is equal to 4.
Multiplication is generalized further to other types of numbers (such as complex numbers) and to more abstract constructs such as matrices.
Multiplication is often written using the multiplication sign "×" between the terms; that is, in infix notation. The result is expressed with an equals sign. For example,
There are several other common notations for multiplication:
5*2
) is often used in programming languages because it
appears on every keyboard and is easier to see on older monitors.
This usage originated in the FORTRAN programming language.The numbers to be multiplied are generally called the "factors" or "multiplicands". When thinking of multiplication as repeated addition, the number to be multiplied is called the "multiplicand", while the number of multiples is called the "multiplier". In algebra, a number that is the multiplier of a variable or expression (e.g. the 3 in 3xy^{2}) is called a coefficient.
The result of a multiplication is called a product, and is a multiple of each factor that is an integer. For example 15 is the product of 3 and 5, and is both a multiple of 3 and a multiple of 5.
The common methods for multiplying numbers using pencil and paper require a multiplication table of memorized or consulted products of small numbers (typically any two numbers from 0 to 9), however one method, the peasant multiplication algorithm, does not.
Multiplying numbers to more than a couple of decimal places by hand is tedious and error prone. Common logarithms were invented to simplify such calculations. The slide rule allowed numbers to be quickly multiplied to about three places of accuracy. Beginning in the early twentieth century, mechanical calculators, such as the Marchant, automated multiplication of up to 10 digit numbers. Modern electronic computers and calculators have greatly reduced the need for multiplication by hand.
Methods of multiplication were documented in the Egyptian, Greek, Babylonian, Indus valley, and Chinese civilizations.
The Ishango bone, dated to about 18,000 to 20,000 BC, hints at a knowledge of multiplication in the Upper Paleolithic era in Central Africa.
The Egyptian method of multiplication of integers and fractions, documented in the Ahmes Papyrus, was by successive additions and doubling. For instance, to find the product of 13 and 21 one had to double 21 three times, obtaining 1 × 21 = 21, 2 × 21 = 42, 4 × 21 = 84, 8 × 21 = 168. The full product could then be found by adding the appropriate terms found in the doubling sequence:
The Babylonians used a sexagesimal positional number system, analogous to the modern day decimal system. Thus, Babylonian multiplication was very similar to modern decimal multiplication. Because of the relative difficulty of remembering 60 × 60 different products, Babylonian mathematicians employed multiplication tables. These tables consisted of a list of the first twenty multiples of a certain principal number n: n, 2n, ..., 20n; followed by the multiples of 10n: 30n 40n, and 50n. Then to compute any sexagesimal product, say 53n, one only needed to add 50n and 3n computed from the table.
In the mathematical text Zhou Bi Suan Jing, dated prior to 300 B.C., and the Nine Chapters on the Mathematical Art, multiplication calculations were written out in words, although the early Chinese mathematicians employed an abacus in hand calculations involving addition and multiplication.
The early Indian mathematicians of the Indus Valley Civilization used a variety of intuitive tricks to perform multiplication. Most calculations were performed on small slate hand tablets, using chalk tables. One technique was that of lattice multiplication (or gelosia multiplication). Here a table was drawn up with the rows and columns labelled by the multiplicands. Each box of the table was divided diagonally into two, as a triangular lattice. The entries of the table held the partial products, written as decimal numbers. The product could then be formed by summing down the diagonals of the lattice.
The modern method of multiplication based on the HinduArabic numeral system was first described by Brahmagupta. Brahmagupta gave rules for addition, subtraction, multiplication and division. Henry Burchard Fine, then professor of Mathematics at Princeton University, wrote the following:
The product of a sequence of terms can be written with the product symbol, which derives from the capital letter Π (Pi) in the Greek alphabet. Unicode position U+220F (∏) contains a glyph for denoting such a product, distinct from U+03A0 (Π), the letter. The meaning of this notation is given by:
The subscript gives the symbol for a dummy variable (i in this case), called the "index of multiplication" together with its lower bound (m), whereas the superscript (here n) gives its upper bound. The lower and upper bound are expressions denoting integers. The factors of the product are obtained by taking the expression following the product operator, with successive integer values substituted for the index of multiplication, starting from the lower bound and incremented by 1 up to and including the upper bound. So, for example:
In case m = n, the value of the product is the same as that of the single factor x_{m}. If m > n, the product is the empty product, with the value 1.
One may also consider products of infinitely many terms; these are called infinite products. Notationally, we would replace n above by the lemniscate (infinity symbol) ∞. In the reals, the product of such a series is defined as the limit of the product of the first n terms, as n grows without bound. That is, by definition,
One can similarly replace m with negative infinity, and define:
provided both limits exist.
The definition of multiplication as repeated addition provides a way to arrive at a settheoretic interpretation of multiplication of cardinal numbers. In the expression
if the n copies of a are to be combined in disjoint union then clearly they must be made disjoint; an obvious way to do this is to use either a or n as the indexing set for the other. Then, the members of are exactly those of the Cartesian product . The properties of the multiplicative operation as applying to natural numbers then follow trivially from the corresponding properties of the Cartesian product.
For integers, fractions, and real and complex numbers, multiplication has certain properties:
Other mathematical systems that include a multiplication operation may not have all these properties. For example, multiplication is not, in general, commutative for matrices and quaternions.
Not all of these properties are independent; some are a consequence of the others. A property that can be proven from the others is the zero property of multiplication. It is proven by means of the distributive property. We assume all the usual properties of addition and subtraction, and −x means the same as 0 − x.
So we have proven:
The identity (−1) · x = −x can also be proven using the distributive property:
The proof that (−1) · (−1) = 1 is now easy:
In the book Arithmetices principia, nova methodo exposita, Giuseppe Peano proposed a new definition for multiplication based on his axioms for natural numbers.^{[2]}
Here, b′ represents the successor of b, or the natural number which follows b. With his other nine axioms, it is possible to prove common rules of multiplication, such as the distributive or associative properties.
It is possible, though difficult, to create a recursive definition of multiplication with set theory. Such a system usually relies on the Peano definition of multiplication.
There are many sets that, under the operation of multiplication, satisfy the axioms that define group structure. These axioms are closure, associativity, and the inclusion of an identity element and inverses.
A simple example is the set of nonzero rational numbers. Here we have identity 1, as opposed to groups under addition where the identity is typically 0. Note that with the rationals, we must exclude zero because, under multiplication, it does not have an inverse: there is no rational number that can be multiplied by zero to result in 1. In this example we have an abelian group, but that is not always the case.
To see this, look at the set of invertible square matrices of a given dimension, over a given field. Now it is straightforward to verify closure, associativity, and inclusion of identity (the identity matrix) and inverses. However, matrix multiplication is not commutative, therefore this group is nonabelian.
Another fact of note is that the integers under multiplication is not a group, even if we exclude zero. This is easily seen by the nonexistence of an inverse for all elements other than 1 and 1.
Multiplication in group theory is typically notated either by a dot, or by juxtaposition (the omission of an operation symbol between elements). So multiplying element a by element b could be notated a b or ab. When referring to a group via the indication of the set and operation, the dot is used, e.g. our first example could be indicated by
Numbers can count (3 apples), order (the 3rd apple), or measure (3.5 feet high); as the history of mathematics has progressed from counting on our fingers to modelling quantum mechanics, multiplication has been generalized to more complicated and abstract types of numbers, and to things that are not numbers (such as matrices) or do not look much like numbers (such as quaternions).
When multiplication is repeated, the resulting operation is known as exponentiation. For instance, the product 2×2×2 of three factors of two is "two raised to the third power", and is denoted by 2^{3}, a two with a superscript three. In this example, the number two is the base, and three is the exponent. In general, the exponent (or superscript) indicates how many times to multiply base by itself, so that the expression
indicates that the base a to be multiplied by itself n times.

Please help develop this page
This page was created, but so far, little content has been added. Everyone is invited to help expand and create educational content for Wikiversity. If you need help learning how to add content, see the editing tutorial and the MediaWiki syntax reference. To help you get started with content, we have automatically added references below to other Wikimedia Foundation projects. This will help you find materials such as information, media and quotations on which to base the development of "Multiplication" as an educational resource. However, please do not simply copyandpaste large chunks from other projects. You can also use the links in the blue box to help you classify this page by subject, educational level and resource type. 

Contents 
Multiplication is denoted by an asterisk (*), , or sign. However, the X sign is normally not used in algebra, and is instead limited to very basic elementary math, as it can easily be confused with an "x" variable. The generic multiplication operator will take any two numbers, called factors, as operands. The result is called the product of the two numbers. If the multiplicants are not both written as numbers, the multiplication sign can be left out. Thus, the following example expressions are equivalent:
Multiplication is a form of repeated addition. For example means
Multiplication is also commutative. This means that the multiplication of two numbers (factors) will give the same product regardless of the order in which the numbers are multiplied together. The following expressions are also equivalent:
Numbers with exponents that are whole numbers larger than 1 indicate the number of factors to be multiplied, thus that number is multiplied by itself as many times as the exponent shows. Numbers with an exponent of 1 have only one factor, and therefore are equal to the number. Any number with an exponent of 0 has no factors at all, and the result is 1. Examples:
Long Multiplication is the multiplication of numbers more than 12, but usually only the facts from 1 through 9 are used. Before you attempt long multiplication, please make sure you know the facts 1 through 9. The others are optional, but makes long division a bit easier. The steps for the vertical multiplication method are:
1. Write the numbers down.
52 19 
2. Multiply 9 times 2. If there is a tens place for the answer, regroup. Multiply 9 times 5, add the regroup, and write the numbers down. You should have:
1 52 19  468
3. Multiply 1 times 2, and 1 times 5, regrouping if needed, but this time shift the answer one space to the left. If you want to, you can put a zero under the 8 instead. You should now have:
52 19  468 520
4. Now add.
52 19  468 520  988
If you are multiplying decimals, then multiply without the decimal point. Count the number of decimal places in both numbers, and add the number of decimal places. In the answer, count that number of spaces to the left. Put the decimal point there.
5. In a summary:
Write the problem down, vertically. Multiply the last digit of the second number to the last digit of the first number. Regroup if there is a tens place in the answer. Multiply it by the second to last number, and ADD the regroup. Repeat the process for the second to last digit of the second number, but put a 0 at the end of the line under the number you got before, if a third line put 2 0s, and repeat until the problem is done.
Fast Multiplication is the method in which you can reasonably multiply numbers greater than 10 and reasonably less than 1000 by simply multiplying by the method of "10's." This is done by recognizing how many digits there are in the numbers. Here are some steps which are useful for multiplying numbers really fast
1. See if you can recognize any zeros on the end and simply "add them" to your answer.
45,300 x 5 The easy way to do this is "taking away" the 2 zeros for now and reserving them for later. the number is now 453 x 5, which is much too mind boggling to do. Now here comes the interesting part of the method of "10's"
2. Break down the number into its "10's" parts
What this means is basically breakup the number by its place value.
453 = 4 (hundreds place) + 5 (tens place) + 3 (ones place)
Knowing that, this become 400, 50 and 3.
3. Multiply and apply the "10's part"
okay now simply multiply:
So, here is a step where we essentially take out the "0's" out for a bit and put it back in when were done.
so, its now 5 x 400. in order to make it easier, "take out" the zeroes for now and multiply 4 x 5 = 20. Now heres the magic. Since you magically took away the 2 zeroes, you will now suddenly make the 2 zeroes reappear! 20 + "00" = 2000! AMAZING! (the quotes means they're magic zeroes, and simply not the value of zero!)
50 is done the same away. Take away the "0" and multiply 5 x 5 = 25. Now add it back, 25 + "0" = 250
Simply 3 x 5 = 15
4. Now abracadabra, Add them all together!
2000 250 15  2265!
5. Now take the two zeroes you reserved in the beginning (from the original 45,300), and tack them onto the end to get your answer: 226,500.
Step 2: Multiplying numbers that are not zero friendly
2102 x 52
Using the step from before recognize that:
2102 = 2 (thousand) + 1(hundred) + 0 (tens) + 2 (ones) 52 = 5 (tens) + 2 (ones)
Now, to make it easier on yourself, circle the number 2 of "52" and put it in your magic hat. (2)
Now the problem becomes 2102 x 50. Look familiar? First of all, take out the magic "0" and put it in the hat, too. Since we recognized that 50 is basically 5 with an added magical "0" to it, we now see the problem as
2102 x 5!
Now break down the bigger, uglier number and start multiplying: 2000 x 5 (take away the magic zeroes) = 2 x 5 = 10 + "000"(now put them back!) = 10,000 (notice it has 4 zeroes) 100 x 5 (take away the magic zeroes) = 1 x 5 = 5 + "00" (now put them back!) = 500 (2 zeroes) 2 x 5 (sadly, no magical zeroes) = 2 x 5 = 10 = 10 (1 zero)
Remember, after every step, be sure to put your friendly magical "0" back in: 10,000 + "0" =100,000 500 + "0" = 5,000 10 + "0" = 100 (notice how the number of zeroes on the left side equal the number of zeroes on the right side)
Now add them all together:
100000 5000 100  105100....... That's not all yet folks! Do you remember the 2 in your magic hat? Lets get it to work:
2 x 2102 = 2000 x 2 = 2 x 2 = 4 = 4000 100 x 2 = 1 x 2 = 2 = 200 2 x 2 = 4 total: 4204
So the answer should be 105,100 4,204  109,304! Wow!
To practice this concept, I recommend Developmental Mathematics, volume 8, along with cards to memorize multiplication facts. This is my favorite for developing multiplication skills, but if you prefer something else, try Miquon Math. This is a complete program for grades 13 and is an excellent program for developing advanced math skills. Another option is Progress in Mathematics, a standardsbased math program for SadlierOxford. Of course, advance multiplication skills until the student/s is doing 5digit multiplication with ease.
Division uses the ÷ sign. It may also be signified by the slash, /, :, or the fraction bar. The generic division operator will take any two numbers as operands. The number before the ÷ sign is called the dividend and the number after the ÷ sign is called the divisor. The result is called the quotient of the two numbers.
Division is not a commutative operation. Switching the dividend and the divisor will likely give a different quotient (but sometimes not). The division with a divisor of 0 is not defined. There is no answer for it.
Example:
In arithmetic, long division is an algorithm for division of two real numbers. It requires only the means to write the numbers down, and is simple to perform even for large dividends because the algorithm separates a complex division problem into smaller problems. However, the procedure requires various numbers to be divided by the divisor: this is simple with singledigit divisors, but becomes harder with larger ones.
A more generalized version of this method is used for dividing polynomials (sometimes using a shorthand version called synthetic division).
In long division notation, 500 ÷ 4 = 125 is denoted as follows:
The method involves several steps:
1. Write the dividend and divisor in this form:
In this example, 500 is the dividend and 4 is the divisor.
2. Consider the leftmost digit of the dividend (5). Find the largest multiple of the divisor that is less than the leftmost digit: in other words, mentally perform "5 divided by 4". If this digit is too small, consider the first two digits.
In this case, the largest multiple of 4 that is less than 5 is 4. Write this number under the leftmost digit of the dividend. Divide the multiple by the divisor (in this case, 4 divided by 4) and write the result (in this case, 1) above the line over the leftmost digit of the dividend.
3. Subtract the digit under the dividend from the digit used in the dividend (in this case, subtract 4 from 5). Write the result (remainder) (in this case, 1) underneath and in the same column, then drop the second digit of the dividend (in this case, the first zero) to the right of it. This gives you a new number to divide by the divisor.
4. Now apply the same steps 2 and 3 to this new number, and write the results in the corresponding columns (in this case, the unit column is aligned with the second digit of the original dividend): multiple and remainder underneath the new number, and the answer above the line.
5. Repeat step 4 until there are no digits remaining in the dividend. The number written above the bar is the quotient, and the last remainder calculated is the remainder for the entire problem.
Multiplication is an arithmetic operation for finding the product of two numbers. Multiplication is the third operation in maths after addition which is the first, subtraction which is the second and then there is multiplication.
With natural numbers, it tells you the number of tiles in a rectangle where one of the two numbers equals the number of tiles on one side and the other number equals the number of tiles on the neighbouring side.
With real numbers, it tells you the area of a rectangle where the first number equals the size of one side and the second number equals the size of the neighbouring side.
For example, three multiplied by five is the total of five threes added together, or the total of three fives. This can be written down as 3 × 5 = 15, or spoken as "three times five equals fifteen." Mathematicians call the two numbers you wish to multiply "coefficients" together, or "multiplicand" and "multiplicator" separately. Multiplicand × multiplicator = product.
Multiplication between numbers is said to be commutative when the order of the numbers does not influence the value of the product. This is true for the Integers (whole numbers), e.g. 4 × 6 is the same as 6 × 4, and also for the Rational numbers (fractions), and for all the other Real numbers (representable as a field in the continuous line), and also for Complex numbers (numbers representable as a field in the plane). It is not true for quaternions (numbers representable as a ring in the fourdimensional space), vectors or matrices.
The opposite of multiplication is division.
