# The Full Wiki

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

# Encyclopedia

Table of geography, hydrography, and navigation, from the 1728 Cyclopaedia.

Navigation is the process of reading, and controlling the movement of a craft or vehicle from one place to another.[1] It is also the term of art used for the specialized knowledge used by navigators to perform navigation tasks. The word navigate is derived from the Latin "navigate", which is the command "sail".[1] All navigational techniques involve locating the navigator's position compared to known locations or patterns.

## Basic concepts

Longitude (λ) Map of Earth Lines of longitude appear vertical with varying curvature in this projection; but are actually halves of great ellipses, with identical radii at a given latitude. Lines of latitude appear horizontal with varying curvature in this projection; but are actually circular with different radii. All locations with a given latitude are collectively referred to as a circle of latitude. The equator divides the planet into a Northern Hemisphere, a Southern Hemisphere and has a latitude of 0°. This box: view • talk • edit

### Latitude

The latitude of a place on the earth's surface is the angular distance north or south of the equator.[2] Latitude is usually expressed in degrees (marked with °) ranging from 0° at the Equator to 90° at the North and South poles.[2] The latitude of the North Pole is 90° N, and the latitude of the South Pole is 90° S.[2] Historically, mariners calculated latitude in the Northern Hemisphere by sighting the North Star Polaris with a sextant and sight reduction tables to take out error for height of eye and atmospheric refraction. Generally, the height of Polaris in degrees of arc above the horizon is the latitude of the observer.

### Longitude

Similar to latitude, the longitude of a place on the earth's surface is the angular distance east or west of the prime meridian or Greenwich meridian.[2] Longitude is usually expressed in degrees (marked with °) ranging from at the Greenwich meridian to 180° east and west. Sydney, Australia, for example, has a longitude of about 151° east. New York City has a longitude of about 74° west. For most of history, mariners struggled to determine precise longitude. The problem was solved with the invention of the marine chronometer. Longitude can be calculated if the precise time of a sighting is known.

## Modern technique

Most modern navigation relies primarily on positions determined electronically by receivers collecting information from satellites. Most other modern techniques rely on crossing lines of position or LOP.[3] A line of position can refer to two different things: a line on a chart and a line between the observer and an object in real life.[4] A bearing is a measure of the direction to an object.[4] If the navigator measures the direction in real life, the angle can then be drawn on a nautical chart and the navigator will be on that line on the chart.[4]

In addition to bearings, navigators also often measure distances to objects.[3] On the chart, a distance produces a circle or arc of position.[3] Circles, arcs, and hyperbolae of positions are often referred to as lines of position.

If the navigator draws two lines of position, and they intersect he must be at that position.[3] A fix is the intersection of two or more LOPs.[3]

If only one line of position is available, this may be evaluated against the dead reckoning position to establish an estimated position.[5]

Lines (or circles) of position can be derived from a variety of sources:

• celestial observation (a short segment of the circle of equal altitude, but generally represented as a line),
• terrestrial range (natural or man made) when two charted points are observed to be in line with each other,[6]
• compass bearing to a charted object,
• radar range to a charted object,
• on certain coastlines, a depth sounding from echo sounder or hand lead line.

There are some methods seldom used today such as "dipping a light" to calculate the geographic range from observer to lighthouse

Methods of navigation have changed through history.[7] Each new method has enhanced the mariner’s ability to complete his voyage.[7] One of the most important judgments the navigator must make is the best method to use.[7] Some types of navigation are depicted in the table.

The practice of navigation usually involves a combination of these different methods.[7]

The navigator plots his 9am position, indicated by the triangle, and, using his course and speed, estimates his position at 9:30am and 10am.

Dead reckoning is the process of estimating present position by projecting course and speed from a known past position.[8] It is also used to predict a future position by projecting course and speed from a known present position.[8] The DR position is only an approximate position because it does not allow for the effect of leeway, current, helmsman error, compass error, or any other external influences.[8]

The navigator uses dead reckoning in many ways, such as:[8]

• to determine sunrise and sunset,
• to predict landfall, sighting lights and arrival times,
• to evaluate the accuracy of electronic positioning information,
• to predict which celestial bodies will be available for future observation.

The most important use of dead reckoning is to project the position of the ship into the immediate future and avoid hazards to navigation.[8]

The navigator carefully tends the DR plot, updating it when required, and uses it to evaluate external forces acting on the ship. The navigator also consults the DR plot to avoid navigation hazards.[8] A fix taken at each DR position will reveal the effects of current, wind, and steering error, and allow the navigator to stay on track by correcting for them.[8]

The use of DR when an Electronic Charts Display and Information System (ECDIS) is the primary plotting method will vary with the type of system. An ECDIS allows the display of the ship’s heading projected out to some future position as a function of time, the display of waypoint information, and progress toward each waypoint in turn.[8]

Until ECDIS is proven to provide the level of safety and accuracy required, the use of a traditional DR plot on paper charts is a prudent backup, especially in restricted waters.[8]

Before the development of the lunar distance method or the marine chronometer, dead reckoning was the primary method of determining longitude available to mariners such as Christopher Columbus and John Cabot on their trans-Atlantic voyages.

### Piloting

Piloting (also called pilotage) involves navigating a vessel in restricted waters and fixing its position as precisely as possible at frequent intervals.[9] More so than in other phases of navigation, proper preparation and attention to detail are important.[9] Procedures vary from vessel to vessel, and between military, commercial, and private vessels.[9]

A military navigation team will nearly always consist of several people.[9] A military navigator might have bearing takers stationed at the gyro repeaters on the bridge wings for taking simultaneous bearings, while the civilian navigator must often take and plot them himself.[9] While the military navigator will have a bearing book and someone to record entries for each fix, the civilian navigator will simply pilot the bearings on the chart as they are taken and not record them at all.[9]

If the ship is equipped with an ECDIS, it is reasonable for the navigator to simply monitor the progress of the ship along the chosen track, visually ensuring that the ship is proceeding as desired, checking the compass, sounder and other indicators only occasionally.[9] If a pilot is aboard, as is often the case in the most restricted of waters, his judgement can generally be relied upon, further easing the workload.[9] But should the ECDIS fail, the navigator will have to rely on his skill in the manual and time-tested procedures.[9]

A celestial fix will be at the intersection of two or more circles.

Celestial navigation systems are based on observation of the positions of the Sun, Moon, Planets and navigational stars. Such systems are in use as well for terrestrial navigating as for interstellar navigating. By knowing which point on the rotating earth a celestial object is above and measuring its height above the observer's horizon, the navigator can determine his distance from that subpoint. A Nautical almanac and a chronometer are used to compute the subpoint on earth a celestial body is over, and a sextant is used to measure the body's angular height above the horizon. That height can then be used to compute distance from the subpoint to create a circular line of position. A navigator shoots a number of stars in succession to give a series of overlapping lines of position. Where they intersect is the celestial fix. The moon and sun may also be used. The sun can also be used by itself to shoot a succession of lines of position (best done around local noon) to determine a position.[10]

#### Marine chronometer

In order to accurately measure longitude, the precise time of a sextant sighting (down to the second, if possible) must be recorded. Each second of error is equivalent to 15 seconds of longitude error, which at the equator is a position error of .29 mile, about the accuracy limit of manual celestial navigation.

The spring-driven marine chronometer is a precision timepiece used aboard ship to provide accurate time for celestial observations.[10] A chronometer differs from a spring-driven watch principally in that it contains a variable lever device to maintain even pressure on the mainspring, and a special balance designed to compensate for temperature variations.[10]

A spring-driven chronometer is set approximately to Greenwich mean time (GMT) and is not reset until the instrument is overhauled and cleaned, usually at three-year intervals.[10] The difference between GMT and chronometer time is carefully determined and applied as a correction to all chronometer readings.[10] Spring-driven chronometers must be wound at about the same time each day.[10]

Quartz crystal marine chronometers have replaced spring-driven chronometers aboard many ships because of their greater accuracy.[10] They are maintained on GMT directly from radio time signals.[10] This eliminates chronometer error and watch error corrections.[10] Should the second hand be in error by a readable amount, it can be reset electrically.[10]

The basic element for time generation is a quartz crystal oscillator.[10] The quartz crystal is temperature compensated and is hermetically sealed in an evacuated envelope.[10] A calibrated adjustment capability is provided to adjust for the aging of the crystal.[10]

The chronometer is designed to operate for a minimum of 1 year on a single set of batteries.[10] Observations may be timed and ship’s clocks set with a comparing watch, which is set to chronometer time and taken to the bridge wing for recording sight times.[10] In practice, a wrist watch coordinated to the nearest second with the chronometer will be adequate.[10]

A stop watch, either spring wound or digital, may also be used for celestial observations.[10] In this case, the watch is started at a known GMT by chronometer, and the elapsed time of each sight added to this to obtain GMT of the sight.[10]

All chronometers and watches should be checked regularly with a radio time signal.[10] Times and frequencies of radio time signals are listed in publications such as Radio Navigational Aids.[10]

#### The marine sextant

The marine sextant is used to measure the elevation of celestial bodies above the horizon.

The second critical component of celestial navigation is to measure the angle formed at the observer's eye between the celestial body and the sensible horizon. The sextant, an optical instrument, is used to perform this function. The sextant consists of two primary assemblies. The frame is a rigid triangular structure with a pivot at the top and a graduated segment of a circle, referred to as the "arc", at the bottom. The second component is the index arm, which is attached to the pivot at the top of the frame. At the bottom is an endless vernier which clamps into teeth on the bottom of the "arc". The optical system consists of two mirrors and, generally, a low power telescope. One mirror, referred to as the "index mirror" is fixed to the top of the index arm, over the pivot. As the index arm is moved, this mirror rotates, and the graduated scale on the arc indicates the measured angle ("altitude").

The second mirror, referred to as the "horizon glass", is fixed to the front of the frame. One half of the horizon glass is silvered and the other half is clear. Light from the celestial body strikes the index mirror and is reflected to the silvered portion of the horizon glass, then back to the observer's eye through the telescope. The observer manipulates the index arm so the reflected image of the body in the horizon glass is just resting on the visual horizon, seen through the clear side of the horizon glass.

Adjustment of the sextant consists of checking and aligning all the optical elements to eliminate "index correction". Index correction should be checked, using the horizon or more preferably a star, each time the sextant is used. The practice of taking celestial observations from the deck of a rolling ship, often through cloud cover and with a hazy horizon, is by far the most challenging part of celestial navigation.

A radio direction finder or RDF is a device for finding the direction to a radio source. Due to radio's ability to travel very long distances "over the horizon", it makes a particularly good navigation system for ships and aircraft that might be flying at a distance from land.

RDFs works by rotating a directional antenna and listening for the direction in which the signal from a known station comes through most strongly. This sort of system was widely used in the 1930s and 1940s. RDF antennas are easy to spot on German World War II aircraft, as loops under the rear section of the fuselage, whereas most US aircraft enclosed the antenna in a small teardrop-shaped fairing.

In navigational applications, RDF signals are provided in the form of radio beacons, the radio version of a lighthouse. The signal is typically a simple AM broadcast of a morse code series of letters, which the RDF can tune in to see if the beacon is "on the air". Most modern detectors can also tune in any commercial radio stations, which is particularly useful due to their high power and location near major cities.

Decca, OMEGA, and LORAN-C are three similar hyperbolic navigation systems. Decca was a hyperbolic low frequency radio navigation system (also known as multilateration) that was first deployed during World War II when the Allied forces needed a system which could be used to achieve accurate landings. As was the case with Loran C, its primary use was for ship navigation in coastal waters. Fishing vessels were major post-war users, but it was also used on aircraft, including a very early (1949) application of moving-map displays. The system was deployed in the North Sea and was used by helicopters operating to oil platforms.

The OMEGA Navigation System was the first truly global radio navigation system for aircraft, operated by the United States in cooperation with six partner nations. OMEGA was developed by the United States Navy for military aviation users. It was approved for development in 1968 and promised a true worldwide oceanic coverage capability with only eight transmitters and the ability to achieve a four mile accuracy when fixing a position. Initially, the system was to be used for navigating nuclear bombers across the North Pole to Russia. Later, it was found useful for submarines.[1] Due to the success of the Global Positioning System the use of Omega declined during the 1990s, to a point where the cost of operating Omega could no longer be justified. Omega was terminated on September 30, 1997 and all stations ceased operation.

LORAN is a terrestrial navigation system using low frequency radio transmitters that use the time interval between radio signals received from three or more stations to determine the position of a ship or aircraft. The current version of LORAN in common use is LORAN-C, which operates in the low frequency portion of the EM spectrum from 90 to 110 kHz. Many nations are users of the system, including the United States, Japan, and several European countries. Russia uses a nearly exact system in the same frequency range, called CHAYKA. LORAN use is in steep decline, with GPS being the primary replacement. However, there are attempts to enhance and re-popularize LORAN. LORAN signals are less susceptible to interference and can penetrate better into foliage and buildings than GPS signals.

When a vessel is within radar range of land or special radar aids to navigation, the navigator can take distances and angular bearings to charted objects and use these to establish arcs of position and lines of position on a chart.[11] A fix consisting of only radar information is called a radar fix.[12]

Types of radar fixes include "range and bearing to a single object,"[13] "two or more bearings,"[13] "tangent bearings,"[13] and "two or more ranges."[13]

Parallel indexing is a technique defined by William Burger in the 1957 book The Radar Observer's Handbook.[14] This technique involves creating a line on the screen that is parallel to the ship's course, but offset to the left or right by some distance.[14] This parallel line allows the navigator to maintain a given distance away from hazards.[14]

Some techniques have been developed for special situations. One, known as the "contour method," involves marking a transparent plastic template on the radar screen and moving it to the chart to fix a position.[15]

Another special technique, known as the Franklin Continuous Radar Plot Technique, involves drawing the path a radar object should follow on the radar display if the ship stays on its planned course.[16] During the transit, the navigator can check that the ship is on track by checking that the pip lies on the drawn line.[16]

Global Navigation Satellite System or GNSS is the term for satellite navigation systems that provide positioning with global coverage. A GNSS allow small electronic receivers to determine their location (longitude, latitude, and altitude) to within a few metres using time signals transmitted along a line of sight by radio from satellites. Receivers on the ground with a fixed position can also be used to calculate the precise time as a reference for scientific experiments.

As of 2007, the United States NAVSTAR Global Positioning System (GPS) is the only fully operational GNSS. The Russian GLONASS is a GNSS in the process of being restored to full operation. The European Union's Galileo positioning system is a next generation GNSS in the initial deployment phase, scheduled to be operational in 2010. China has indicated it may expand its regional Beidou navigation system into a global system.

More than two dozen GPS satellites are in medium Earth orbit, transmitting signals allowing GPS receivers to determine the receiver's location, speed and direction.

Since the first experimental satellite was launched in 1978, GPS has become an indispensable aid to navigation around the world, and an important tool for map-making and land surveying. GPS also provides a precise time reference used in many applications including scientific study of earthquakes, and synchronization of telecommunications networks.

Developed by the United States Department of Defense, GPS is officially named NAVSTAR GPS (NAVigation Satellite Timing And Ranging Global Positioning System). The satellite constellation is managed by the United States Air Force 50th Space Wing. The cost of maintaining the system is approximately US\$750 million per year,[17] including the replacement of aging satellites, and research and development. Despite this fact, GPS is free for civilian use as a public good.

The Day's work in navigation is a minimal set of tasks consistent with prudent navigation. The definition will vary on military and civilian vessels, and from ship to ship, but takes a form resembling[18]:

1. Maintain continuous dead reckoning plot.
2. Take two or more star observations at morning twilight for a celestial fix. (prudent to observe 6 stars)
3. Morning sun observation. Can be taken on or near prime vertical for longitude, or at any time for a line of position.
4. Determine compass error by azimuth observation of the sun.
5. Computation of the interval to noon, watch time of local apparent noon, and constants for meridian or ex-meridian sights.
6. Noontime meridian or ex-meridian observation of the sun for noon latitude line. Running fix or cross with Venus line for noon fix.
7. Noontime determination the day's run and day's set and drift.
8. At least one afternoon sun line, in case the stars are not visible at twilight.
9. Determine compass error by azimuth observation of the sun.
10. Take two or more star observations at evening twilight for a celestial fix. (prudent to observe 6 stars)

### Passage planning

Poor passage planning and deviation from the plan can lead to groundings, ship damage and cargo loss.

Passage planning or voyage planning is a procedure to develop a complete description of vessel's voyage from start to finish. The plan includes leaving the dock and harbor area, the enroute portion of a voyage, approaching the destination, and mooring. According to international law, a vessel's captain is legally responsible for passage planning,[19] however on larger vessels, the task will be delegated to the ship's navigator.[20]

Studies show that human error is a factor in 80 percent of navigational accidents and that in many cases the human making the error had access to information that could have prevented the accident.[20] The practice of voyage planning has evolved from penciling lines on nautical charts to a process of risk management.[20]

Passage planning consists of four stages: appraisal, planning, execution, and monitoring,[20] which are specified in International Maritime Organization Resolution A.893(21), Guidelines For Voyage Planning,[21] and these guidelines are reflected in the local laws of IMO signatory countries (for example, Title 33 of the U.S. Code of Federal Regulations), and a number of professional books and publications. There are some fifty elements of a comprehensive passage plan depending on the size and type of vessel.

The appraisal stage deals with the collection of information relevant to the proposed voyage as well as ascertaining risks and assessing the key features of the voyage. In the next stage, the written plan is created. The third stage is the execution of the finalised voyage plan, taking into account any special circumstances which may arise such as changes in the weather, which may require the plan to be reviewed or altered. The final stage of passage planning consists of monitoring the vessel's progress in relation to the plan and responding to deviations and unforeseen circumstances.

## Integrated bridge systems

Electronic integrated bridge concepts are driving future navigation system planning.[7] Integrated systems take inputs from various ship sensors, electronically display positioning information, and provide control signals required to maintain a vessel on a preset course.[7] The navigator becomes a system manager, choosing system presets, interpreting system output, and monitoring vessel response.[7]

## Notes

1. ^ a b Bowditch, 2003:799.
2. ^ a b c d Bowditch, 2003:4.
3. ^ a b c d e Maloney, 2003:615.
4. ^ a b c Maloney, 2003:614
5. ^ Maloney, 2003:618.
6. ^ Maloney, 2003:622.
7. ^ a b c d e f g h i j k l Bowditch, 2002:1.
8. ^ a b c d e f g h i Bowditch, 2002:99.
9. ^ a b c d e f g h i Bowditch, 2002:105.
10. ^ a b c d e f g h i j k l m n o p q r s t Bowditch, 2002:269.
11. ^ Maloney, 2003:744.
12. ^ Bowditch, 2002:816.
13. ^ a b c d National Imagery and Mapping Agency, 2001:163.
14. ^ a b c National Imagery and Mapping Agency, 2001:169.
15. ^ National Imagery and Mapping Agency, 2001:164.
16. ^ a b National Imagery and Mapping Agency, 2001:182.
17. ^ GPS Overview from the NAVSTAR Joint Program Office. Accessed December 15, 2006.
18. ^ Turpin and McEwen, 1980:6-18.
19. ^ "Regulation 34 - Safe Navigation". IMO RESOLUTION A.893(21) adopted on 25 November 1999. Retrieved March 26, 2007.
20. ^ a b c d "ANNEX 24 – MCA Guidance Notes for Voyage Planning". IMO RESOLUTION A.893(21) adopted on 25 November 1999. Retrieved March 26, 2007.
21. ^ "ANNEX 25 – MCA Guidance Notes for Voyage Planning". IMO RESOLUTION A.893(21) adopted on 25 November 1999. Retrieved March 26, 2007.

## References

• Bowditch, Nathaniel (2002). The American Practical Navigator. Bethesda, MD: National Imagery and Mapping Agency. ISBN 0939837544.
• Cutler, Thomas J. (December 2003). Dutton's Nautical Navigation (15th ed.). Annapolis, MD: Naval Institute Press. ISBN 978-1557502483.
• Department of the Air Force (March 2001) (PDF). Air Navigation. Department of the Air Force. Retrieved 2007-04-17.
• Great Britain Ministry of Defence (Navy) (1995). Admiralty Manual of Seamanship. The Stationery Office. ISBN 0117726966.
• Maloney, Elbert S. (December 2003). Chapman Piloting and Seamanship (64th ed.). New York, NY: Hearst Communications Inc.. ISBN 1-58816-098-0.
• National Imagery and Mapping Agency (2001) (PDF). Publication 1310: Radar Navigation and Maneuvering Board Manual (7th edition ed.). Bethesda, MD: U.S. Government Printing Office.
• Turpin, Edward A.; McEwen, William A. (1980). Merchant Marine Officers' Handbook (4th ed.). Centreville, MD: Cornell Maritime Press. ISBN 0-87038-056-X.
• Chisholm, Hugh, ed (1911). "Navigation". Encyclopædia Britannica. 19 (11th edition ed.). http://en.wikisource.org/wiki/User:Tim_Starling/ScanSet_TIFF_demo. Retrieved 2007-04-17.
• Chisholm, Hugh, ed (1911). "Pytheas". Encyclopædia Britannica. 22 (11th edition ed.). http://en.wikisource.org/wiki/User:Tim_Starling/ScanSet_TIFF_demo. Retrieved 2007-04-17.

# 1911 encyclopedia

Up to date as of January 14, 2010
(Redirected to Database error article)

# Wiktionary

Up to date as of January 15, 2010

## German

German Wikipedia has an article on:

Wikipedia de

### Noun

1. navigation (theory and practice of charting a course for a ship, aircraft or spaceship)

# Bible wiki

Up to date as of January 23, 2010

## —Biblical Data:

That the Israelites, practically, did not engage in navigation is due to the fact that they never held the sea-coast for any length of time. According to Jdg 5:17, Josh 19:26, 28, Gen 49:13, and Deut 33:19, the territories of the tribes of Dan, Asher, and Naphtali did indeed touch the sea temporarily, but the time was too short to bring about any fruitful results. Besides, the seacoast of Palestine south of Mount Carmel is remarkably poor in natural harbors. Neither was river navigation in Palestine possible; the Jordan was not suited to it on account of its quick descent and many rapids. Only once is a ferry mentioned in connection with that river, and that was provided for David in order that he might avoid the necessity of fording the Jordan (2 Sam 19:18). It is a remarkable fact that the Old Testament nowhere mentions ships on Lake Gennesaret. This can not be because navigation was not known there, or was unimportant; it is probably due to the fact that Galilee as a whole played too insignificant a part in Hebrew history to have given much occasion to speak of the conditions existing there. At the time of Jesus the lake must have been alive with fishing-boats.

The only Hebrew seafaring expeditions of which anything is known did not proceed from any Mediterranean harbor on the coast of Palestine, but went out from Ezion-geber and Elath on the Red Sea, and they took place possibly only because the Israelites were allied with the Phenicians, who were a maritime people at that time. Even the rafts of cedar and cypress which were necessary for Solomon's building enterprises were brought from the north along the coast, not by Israelites but by Phenicians, the Israelites transporting them overland (1 Kg 5:9). Nor did the Jews engage in navigation in later times, even when they possessed harbors. The Maccabean Simon conquered the seaport town of Joppa (1Macc 14:5), and Herod's extensive building operations in the harbor of Cæsarea are mentioned, but nothing is heard of any seafaring enterprise at that time on the part of Jews. Mention occurs of Jewish piracy in the time of Pompey (Josephus, "Ant." xiv. 3, § 2) and also during the time of the Judæo-Roman war, when the fugitives, who consisted in part of Jews, and who had gathered at Joppa, starting from that point for a short time, made the coasts of Phenicia, Syria, and Egypt unsafe (comp. Josephus, "B. J." iii. 9, § 2). The ships of Tarshish, mentioned in the Bible, concerning whose construction and luxurious equipment Ezek. xxvii. gives an account, were Phenician. See also Ships.

## —Post-Biblical:

The Talmud gives evidence of the participation of Jews in navigation in the long list of foreign articles they are mentioned as importing into Palestine and Babylonia, many of which must have come by ships. Many legal points arose in which the purchase of ships is mentioned (B. B. v. 1). The purchase of a ship includes that of its masts, rudder, and ropes (ib.). Yet some of the stories told by Rabba bar bar Ḥana show a certain wonder at and unfamiliarity with the sea which precludes any wide acquaintance with seamanship. There seems even to have been current a kind ofmarine insurance. According to Josephus ("Contra Ap." ii., § 5), the Jews of Alexandria had the most to do with the sea-trade of the Red Sea.

After the spread of Jewish commerce in Moslem and Christian lands following upon the rise of Islam (see Commerce) there is greater evidence of Jewish participation in sea-trade. The Radanites carried on traffic in this way throughout the Mediterranean. Charles the Great once mistook a Norman vessel for a Jewish one, and there seems to have been frequent communication between Jews of Cologne and England by sea ("Recessen der Hansetage, 1256-1430," iii. 295). Jews contributed largely toward the progress of chartography in the Middle Ages (see Chartography), and the discovery of America was largely due to their charts and mathematical instruments. Several Jews accompanied Columbus, Vasco da Gama, and Albuquerque. When James Lancaster went on the first voyage of the East India Company a Jew who knew several languages accompanied him and was of considerable assistance in dealing with the Sultan of Sumatra. In 1521 Jewish pirates attempted to prevent the junction of the Spanish fleet with that of the Venetians. In Hamburg and Amsterdam several Jewish seamen followed their calling. Captain Ribeiro died in the latter place in 1623; and the family Ferro in Hamburg have an anchor for their crest. In both Glückstadt and Emden Jews were known as sailors in the seventeenth century. In the former Paulo Melão built a ship for himself in 1628, much against the will of the local ship-builders. Jews of Altona carried on trade with Greenland in the eighteenth century, and in the fight off the Dogger Bank in the North Sea Captain Almeida distinguished himself on the Dutch side (1785). At the beginning of the nineteenth century the firm of Meyer & Simon had many vessels which carried corn to England, and had branches in Hamburg and New York. One of their ships was named the "Swift Jew." Philip Ree of Hamburg had at one time no less than five ships plying between Amsterdam and Antwerp. Other firms connected with the shipping trade were those of Lyon of Emden and Hollander of Sens.

In more modern times many Jewish firms have been connected with shipping in the colonial trade, while Albert Ballin is the chief promoter of the Hamburg-American transatlantic line, which has almost revolutionized the Atlantic passenger traffic.

Bibliography: Grunwald, Der Juden, als Seefahrer, Hamburg, 1903; idem, in Ost und West, iv. 479-486.

This entry includes text from the Jewish Encyclopedia, 1906.

# Simple English

Navigation is how ships or planes find their way from one place to another place. The word navigation came from the word "navgatih" from the language of Sanskrit. Latin language word navis means ship; navigation is literally "art of ship mastery".

One type of navigation was made by the Polynesians and is called Polynesian Navigation. They used different things found all around us to find their way from place to place. For example:

• A long time ago (and still used by some people today) people would watch the stars. From this they could then decide which direction they needed to go.
• The weather was watched and they could figure out where they were.
• The time it took to get to a place. When traveling they knew it would take them, for example, two days to get from one place to another. This time would most likely stay the same. From this they could travel two days and know they were close to where they wanted to be.
• The animals they found helped too. When entering different places the people would find different types of animals that only lived in one place. From that they could tell either they were near or far from where they needed to be.

Likewise, the Scandinavians developed a skill of following the stars in the night at sea. The Scandinavian seafarers, Vikings, who lived at North, knew that the star called Polaris stays always put and points to north. They knew always that north is where the Polaris is. They would then know the latitude by measuring the angle between Polaris and horizon. They also used animals, especially birds, to know if land was nearby. They also knew that specific kind of clouds form near land and waves are different near land than at high seas.

As time went by better methods of navigation were invented or discovered. Some of which are:

• A compass. It was discovered that the Earth had two poles (North and South) and that these poles had different magnetic charges (positive and negative). This was when the compass was invented. Resting a strip of magnetic iron on the point of pin it was found that the strip would spin until it matched the magnetic field of Earth. From this a direction could be taken and paths could then be followed.

Compass was first invented in China. It was later invented in France in 12th century.

• A term that is called Pilotage is when ships look out for special beacons or man made markers, which will tell them where they are or to watch out for certain obstacles such as reefs.
• People learned to divide the compass to 360 degrees. They then measured the direction on which the ship had to follow to arrive to harbour (the "bearing") between two harbours. The first navigational sea maps, the proper term "nautical charts", were made that way.

• Stellar Navigation is a further development from the navigation by stars. The stellar navigation employs sextant, compass and a very accurate clock called cronometer. By measuring the altitude of a star (angle between the star and horizon) and its bearing with compass at given time, the navigator can calculate where the ship is. While the GPS has pretty much replaced the stellar navigation, it is still taught in all maritime schools because stellar navigation does not need special electronics.
• Hyperbolic navigation is a nowadays obsolete method of using radio transmitters to define the location of a ship between two or three immobile radio transmitters.
• GPS (Global Positioning System) is a small tool carried by most modern travelers. It uses a system of satellites to find out where the travellers are almost anywhere on Earth.

Navigation can also be used to talk about traffic. For example "The channel will be open to navigation when the bridge has be opened".

Words that mean the same thing as navigation are: Sailing, Seafaring, Pilotage, Piloting