The Full Wiki

Novobiocin: Wikis

Advertisements
  

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Encyclopedia

From Wikipedia, the free encyclopedia

Novobiocin
Systematic (IUPAC) name
4-Hydroxy-3-[4-hydroxy-3-(3-methylbut-2-enyl)benzamido]-8-methylcoumarin-7-yl 3-O-carbamoyl-5,5-di-C-methyl-α-l-lyxofuranoside
Identifiers
CAS number 303-81-1
ATC code ?
PubChem 9346
DrugBank APRD00694
Chemical data
Formula C 31H36N2O11  
Mol. mass 612.624
Pharmacokinetic data
Bioavailability negligible oral bioavailability
Metabolism excreted unchanged
Half life 6 hours
Excretion renal
Therapeutic considerations
Pregnancy cat.  ?
Legal status  ?
Routes intravenous
 Yes check.svgY(what is this?)  (verify)

Novobiocin, also known as albamycin or cathomycin, is an aminocoumarin antibiotic that is produced by the actinomycete Streptomyces niveus, which has recently been identified as a subjective synonym for S. spheroides[1] a member of the order Actinobacteria . Other aminocoumarin antibiotics include clorobiocin and coumermycin A1.[2] Novobiocin was first reported in the mid-1950s (then called streptonivicin).[3][4]

Contents

Mechanism of action

The molecular basis of action of novobiocin, and other related drugs clorobiocin and coumermycin A1 has been examined.[2][5][6][7][8] Aminocoumarins are very potent inhibitors of bacterial DNA gyrase and work by targeting the GyrB subunit of the enzyme involved in energy transduction. Novobiocin as well as the other aminocoumarin antibiotics act as competitive inhibitors of the ATPase reaction catalysed by GyrB. The potency of novobiocin is considerably higher than that of the fluoroquinolones that also target DNA gyrase, but at a different site on the enzyme. The GyrA subunit is involved in the DNA nicking and ligation activity.

Structure

Novobiocin is an aromatic ether compound. Novobiocin may be divided up into three entities; a benzoic acid derivative, a coumarin residue, and the sugar novobiose.[5]. X-ray crytallographic studies have found that the drug-receptor complex of Novobiocin and DNA Gyrase shows that ATP and Novobiocin have overlapping binding sites on the gyrase molecule.[9] The overlap of the coumarin and ATP-binding sites is consistent with aminocoumarins being competitive inhibitors of the ATPase activity.[10]

Advertisements

Structure Activity Relationship

In structure activity relationship experiments it was found that removal of the carbamoyl group located on the novobiose sugar lead to a dramatic decrease in inhibitory activity of novobiocin. [10]

Biosynthesis

This aminocoumarin antibiotic consists of three major substituents. The 3-dimethylallyl-4-hydroxybenzoic acid moiety, known as ring A, is derived from prephenate and dimethylallyl pyrophosphate. The aminocoumarin moiety, known as ring B, is derived from L-Tyrosine. The final component of novobiocin is the sugar derivative L-noviose, known as ring C, which is derived from glucose-1-phosphate. The biosynthetic gene cluster for novobiocin was identified by Heide and coworkers in 1999 (published 2000) from Streptomyces spheroides NCIB 11891[11]. They identified 23 putative open reading frames (ORFs) and more than 11 other ORFs that may play a role in novobiocin biosynthesis.

The biosynthesis of ring A (see Fig. 1) begins with prephenate which is a derived from the shikimic acid biosynthetic pathway. The enzyme NovF catalyzes the decarboxylation of prephenate while simultaneously reducing nicotinamide adenine dinucleotide phosphate (NADP+) to produce NADPH. Following this NovQ catalyzes the electrophilic substitution of the phenyl ring with dimethylallyl pyrophosphate (DMAPP) otherwise known as prenylation[12]. DMAPP can come from either the mevalonic acid pathway or the deoxyxylulose biosynthetic pathway. Next the 3-dimethylallyl-4-hydroxybenzoate molecule is subjected to two oxidative decarboxylations by NovR and molecular oxygen [13]. NovR is a non-heme iron oxygenase with a unique bifunctional catalysis. In the first stage both oxygens are incorporated from the molecular oxygen while in the second step only one is incorporated as determined by isotope labeling studies. This completes the formation of ring A.

Figure 1. Biosynthesis of 3-dimethylallyl-4-hydroxybenzoic acid component of novobiocin (ring A)

The biosynthesis of ring B (see Fig. 2) begins with the natural amino acid L-Tyrosine. This is then adenylated and thioesterified onto the peptidyl carrier protein (PCP) of NovH by ATP and NovH itself[14]. NovI then further modifies this PCP bound molecule by oxidizing the β-position using NADPH and molecular oxygen. NovJ and NovK form a heterodimer of J2K2 which is the active form of this benzylic oxygenase[15]. This process uses NADP+ as a hydride acceptor in the oxidation of the β-alcohol. This ketone will prefer to exist in its enol tautomer in solution. Next a still unidentified protein catalyzes the selective oxidation of the benzene (as shown in Fig. 2). Upon oxidation this intermediate will spontaneously lactonize to form the aromatic ring B and lose NovH in the process.

Figure 2. Biosynthesis of 3-amino-4,7-dihydroxy-2H-chromen-2-one component of novobiocin (ring B)

The biosynthesis of L-noviose (ring C) is shown in Fig. 3. This process starts from glucose-1-phosphate where NovV takes dTTP and replaces the phosphate group with a dTDP group. NovT then oxidizes the 4-hydroxy group using NAD+. NovT also accomplishes a dehydroxylation of the 6 position of the sugar. NovW then epimerizes the 3 position of the sugar[16]. The methylation of the 5 position is accomplished by NovU and S-adenosyl methionine (SAM). Finally NovS reduces the 4 position again to achieve epimerization of that position from the starting glucose-1-phosphate using NADH.

Figure 3. Biosynthesis of L-noviose component of novobiocin (ring C)


Rings A, B, and C are coupled together and modified to give the finished novobiocin molecule. Rings A and B are coupled together by the enzyme NovL using ATP to diphosphorylate the carboxylate group of ring A so that the carbonyl can be attacked by the amine group on ring B. The resulting compound is methylated by NovO and SAM prior to glycosylation[17]. NovM adds ring C (L-noviose) to the hydroxyl group derived from tyrosine with the loss of dTDP. Another methylation is accomplished by NovP and SAM at the 4 position of the L-noviose sugar[18]. This methylation allows NovN to carbamylate the 3 position of the sugar as shown in Fig. 4 completing the biosynthesis of novobiocin.

Figure 4. Completed biosynthesis of novobiocin from ring systems A, B, and C

Clinical Use

It is active against Staphylococcus epidermidis and may be used to differentiate from the other coagulase-negative Staphylococcus saprophyticus, which is resistant to novobiocin, in culture.

Novobiocin was licenced for clinical use under the tradename Albamycin (Pharmacia And Upjohn) in the 1960s. Its efficacy has been demonstrated in preclinical and clinical trials.[19][20] It has since been withdrawn from the market.[21] Novobiocin is effective antistaphylococcal agent used in the treatment of MRSA[22].

References

  1. ^ Lanoot, B., M. Vancanneyt, I. Cleenwerck, L. Wang, W. Li, Z. Liu, and J. Swings. 2002. The search for synonyms among streptomycetes by with SDS-PAGE of whole-cell proteins. Emendation of the species Streptomyces aurantiacus, Streptomyces cacaoi subsp. cacaoi, Streptomyces caeruleus and Streptomyces violaceus. Int. J. Syst. Evol. Microbiol. 52:823-829.
  2. ^ a b Alessandra da Silva Eustáquio (2004) Biosynthesis of aminocoumarin antibiotics in Streptomyces: Generation of structural analogues by genetic engineering and insights into the regulation of antibiotic production. DISSERTATION
  3. ^ Hoeksema, H., Johnson, J. L., and Hinman, J. W. (1955). Structural studies on streptonivicin, a new antibiotic. J Am Chem Soc, 77, 6710-6711.
  4. ^ Smith, C. G., Dietz, A., Sokolski, W. T., and Savage, G. M. (1956). Streptonivicin, a new antibiotic. I. Discovery and biologic studies. Anitbiotics & Chemotherapy, 6, 135- 142.
  5. ^ a b Maxwell, A. (1993). The interaction between coumarin drugs and DNA gyrase. Mol Microbiol, 9, 681-686.
  6. ^ Maxwell, A. (1999). DNA gyrase as a drug target. Biochem Soc Trans, 27, 48-53.
  7. ^ Lewis, R. J., Tsai, F. T. F., and Wigley, D. B. (1996). Molecular mechanisms of drug inhibition of DNA gyrase. Bioessays, 18, 661-671.
  8. ^ Maxwell, A., and Lawson, D. M. (2003). The ATP-binding site of type II topoisomerases as a target for antibacterial drugs. Curr Top Med Chem, 3, 283-303.
  9. ^ F.T.F. Tsai, O.M. Singh, T.Skarzynski, A.J. Wonacott, S. Weston, A. Tucker, R.A. Pauptit, A.L. Breeze, J.P. Poyser, R. O'Brien et al., The high-resolution crystal structure of a 24-kDa gyrase B fragment from E. coli complexed with one of the most potent coumarin inhibitors, clorobiocin. Proteins 28 (1997), pp. 41–52
  10. ^ a b R.H. Flatman, A. Eustaquio, S. Li, L. Heide, and A. Maxwell (2006) Structure-Activity Relationships of Aminocoumarin-Type Gyrase and Topoisomerase IV Inhibitors Obtained by Combinatorial Biosynthesis Antimicrob Agents Chemother. 50(4): 1136–1142.
  11. ^ Steffensky M, Mühlenweg A, Wang ZX, Li SM, Heide L (May 2000). "Identification of the novobiocin biosynthetic gene cluster of Streptomyces spheroides NCIB 11891". Antimicrob. Agents Chemother. 44 (5): 1214–22. doi:10.1128/AAC.44.5.1214-1222.2000. PMID 10770754. PMC 89847. http://aac.asm.org/cgi/pmidlookup?view=long&pmid=10770754.  
  12. ^ Pojer F, Wemakor E, Kammerer B, et al. (March 2003). "CloQ, a prenyltransferase involved in clorobiocin biosynthesis". Proc. Natl. Acad. Sci. U.S.A. 100 (5): 2316–21. doi:10.1073/pnas.0337708100. PMID 12618544. PMC 151338. http://www.pnas.org/cgi/pmidlookup?view=long&pmid=12618544.  
  13. ^ Pojer F, Kahlich R, Kammerer B, Li SM, Heide L (August 2003). "CloR, a bifunctional non-heme iron oxygenase involved in clorobiocin biosynthesis". J. Biol. Chem. 278 (33): 30661–8. doi:10.1074/jbc.M303190200. PMID 12777382. http://www.jbc.org/cgi/pmidlookup?view=long&pmid=12777382.  
  14. ^ Chen H, Walsh CT (April 2001). "Coumarin formation in novobiocin biosynthesis: β-hydroxylation of the aminoacyl enzyme tyrosyl-S-NovH by a cytochrome P450 NovI". Chem. Biol. 8 (4): 301–12. doi:10.1016/S1074-5521(01)00009-6. PMID 11325587. http://linkinghub.elsevier.com/retrieve/pii/S1074-5521(01)00009-6.  
  15. ^ Pacholec M, Hillson NJ, Walsh CT (September 2005). "NovJ/NovK catalyze benzylic oxidation of a β-hydroxyl tyrosyl-S-pantetheinyl enzyme during aminocoumarin ring formation in novobiocin biosynthesis". Biochemistry 44 (38): 12819–26. doi:10.1021/bi051297m. PMID 16171397.  
  16. ^ Thuy TT, Lee HC, Kim CG, Heide L, Sohng JK (April 2005). "Functional characterizations of novWUS involved in novobiocin biosynthesis from Streptomyces spheroides". Arch. Biochem. Biophys. 436 (1): 161–7. doi:10.1016/j.abb.2005.01.012. PMID 15752721. http://linkinghub.elsevier.com/retrieve/pii/S0003-9861(05)00027-5.  
  17. ^ Pacholec M, Tao J, Walsh CT (November 2005). "CouO and NovO: C-methyltransferases for tailoring the aminocoumarin scaffold in coumermycin and novobiocin antibiotic biosynthesis". Biochemistry 44 (45): 14969–76. doi:10.1021/bi051599o. PMID 16274243.  
  18. ^ Freel Meyers CL, Oberthür M, Xu H, Heide L, Kahne D, Walsh CT (January 2004). "Characterization of NovP and NovN: completion of novobiocin biosynthesis by sequential tailoring of the noviosyl ring". Angew. Chem. Int. Ed. Engl. 43 (1): 67–70. doi:10.1002/anie.200352626. PMID 14694473.  
  19. ^ Raad, I., Darouiche, R., Hachem, R., Sacilowski, M., and Bodey, G. P. (1995). Antibiotics and prevention of microbial colonization of catheters. Antimicrob Agents Chemother, 39, 2397-2400.
  20. ^ Raad, I. I., Hachem, R. Y., Abi-Said, D., Rolston, K. V. I., Whimbey, E., Buzaid, A.C., and Legha, S. (1998). A prospective crossover randomized trial of novobiocinand rifampin prophylaxis for the prevention of intravascular catheter infections in cancer patients treated with interleukin-2. Cancer, 82, 403-411.
  21. ^ Albamycin and Novobiocin Sodium - Attorney, Lawsuit, Law Suit, Case, Claim, Settlement, Lawyer, Litigation
  22. ^ T.J. Walsh et al.(1993) Randomized Double-Blinded Trial of Rifampin with Either Novobiocin or Trimethoprim-Sulfamethoxazole against Methicillin-Resistant Staphylococcus aureus Colonization: Prevention of Antimicrobial Resistance and Effect of Host Factors on Outcome. Antimicrobial agents and chemotherapy Vol 37 No 6 p. 1334–1342

Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message