The orbital speed of a body, generally a planet, a natural satellite, an artificial satellite, or a multiple star, is the speed at which it orbits around the barycenter of a system, usually around a more massive body. It can be used to refer to either the mean orbital speed, the average speed as it completes an orbit, or instantaneous orbital speed, the speed at a particular point in its orbit.
The orbital speed at any position in the orbit can be computed from the distance to the central body at that position, and the specific orbital energy, which is independent of position: the kinetic energy is the total energy minus the potential energy.
Contents |
In the case of radial motion:
The transverse orbital speed is inversely proportional to the distance to the central body because of the law of conservation of angular momentum, or equivalently, Kepler's second law. This states that as a body moves around its orbit during a fixed amount of time, the line from the barycenter to the body sweeps a constant area of the orbital plane, regardless of which part of its orbit the body traces during that period of time. This means that the body moves faster near its periapsis than near its apoapsis, because at the smaller distance it needs to trace a greater arc to cover the same area. This law is usually stated as "equal areas in equal time."
For orbits with small eccentricity, the length of the orbit is close to that of a circular one, and the mean orbital speed can be approximated either from observations of the orbital period and the semimajor axis of its orbit, or from knowledge of the masses of the two bodies and the semimajor axis.
where
is the orbital velocity,
is the length of the semimajor axis,
is the orbital period, and
is the standard gravitational
parameter. Note that this is only an approximation that holds
true when the orbiting body is of considerably lesser mass than the
central one, and eccentricity is close to zero.
Taking into account the mass of the orbiting body,
where
is now the mass of the body under consideration,
is the mass of the body being orbited,
is specifically the distance between the two bodies (which is the
sum of the distances from each to the center of mass), and
is the gravitational constant. This is
still a simplified version; it doesn't allow for elliptical orbits, but it does at least allow
for bodies of similar masses.
For an object in an eccentric orbit orbiting a
much larger body, the length of the orbit decreases with
eccentricity ,
and is given at ellipse.
This can be used to obtain a more accurate estimate of the average
orbital speed:
The mean orbital speed decreases with eccentricity.
orbit | center-to-center distance |
altitude above the Earth's surface |
speed | period/time in space | specific orbital energy |
---|---|---|---|---|---|
minimum sub-orbital spaceflight (vertical) | 6,500 km | 100 km | 0.0 km/s | just reaching space | 1.0 MJ/kg |
ICBM | up to 7,600 km | up to 1,200 km | 6 to 7 km/s | time in space: 25 min | 27 MJ/kg |
Low Earth orbit | 6,600 to 8,400 km | 200 to 2,000 km | circular orbit: 6.9 to 7.8 km/s elliptic orbit: 6.5 to 8.2 km/s |
89 to 128 min | 32.1 to 38.6 MJ/kg |
Molniya orbit | 6,900 to 46,300 km | 500 to 39,900 km | 1.5 to 10.0 km/s | 11 h 58 min | 54.8 MJ/kg |
GEO | 42,000 km | 35,786 km | 3.1 km/s | 23 h 56 min | 57.5 MJ/kg |
Orbit of the Moon | 363,000 to 406,000 km | 357,000 to 399,000 km | 0.97 to 1.08 km/s | 27.3 days | 61.8 MJ/kg |
|
|