The Full Wiki

Perlan Project: Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.


From Wikipedia, the free encyclopedia

The Perlan Project is a current research project to fly a sailplane to an altitude of 100,000 feet (30,480 meters).

Polar Stratospheric Cloud Formed by standing mountain wave in Scandinavia
Arctic stratospheric cloud (Mother of Pearl cloud)
Arctic stratospheric cloud (Mother of Pearl cloud)
Altitude 15,000–25,000 m
(50,000–80,000 ft)


Meteorological Basis of the Project

Standing Mountain waves are a source of rising air used in the sport of soaring. Riding these waves, similar in some ways to surfing on an ocean wave, has been widely used to reach great altitudes in sailplanes since they were discovered by German glider pilots, including Wolf Hirth, in 1933 in the Riesengebirge.[1] This method uses the powerfully rising and sinking air in mountain waves. Gliders regularly climb in these waves to high altitudes. Currently, the glider absolute world altitude record stands at 15,460 meters (50,727 feet), which is the altitude reached by the late Steve Fossett and Einar Enevoldson. The previous record was 14,938 meters (49,009 feet). It was set in 1986 by Robert R. Harris, flying from California City and reaching his record height over Mount Whitney, California.[2] This is thought to be near the limit for standing mountain waves in temperate latitudes, although in unusual meteorological conditions much higher altitudes may be achievable.

Standing waves normally do not extend above the tropopause at temperate latitudes. A strong west wind usually decreases above the tropopause, which has been shown to cap or prevent the upward propagation of standing mountain waves. However, at the outer boundary of the polar vortex, in winter, the stratospheric polar night jet exists. Its wind field can join with the wind field of the polar jet stream. The result is a wind which increases with altitude through the tropopause and upward to 100,000 feet or above. When this conjunction of winds occurs over a barrier mountain, standing mountain waves will propagate through that entire altitude range. Einar Enevoldson, former NASA test pilot and originator of The Perlan Project, sought to demonstrate the feasibility of riding these stratospheric standing mountain waves. The weather conditions favorable, although not in every case required to exist simultaneously for a climb into the stratospheric waves, are not exceptional:

  • The stratospheric polar night jet overhead (occurring in near-polar latitudes during the late winter and early spring),
  • Pre-frontal conditions,
  • A gradual increase in wind speed with altitude,
  • Wind direction within 30° of perpendicular to the mountain ridgeline,
  • Strong low-altitude winds in a stable atmosphere,
  • Ridge-top winds of at least 20 knots.

These conditions are likely to occur in the southern region of Patagonia three to four times per year between mid-August and mid-October. They probably occur in New Zealand, but less frequently; over the Antarctic Peninsula more frequently; and at several locations in the northern hemisphere, but closer to the North Pole at latitudes above 60° north.


The overall objective of the project is to show that sailplane flight well into the middle stratosphere--in the vicinity of 100,000 feet--can be done safely, repeatedly and economically. A sailplane is an ideal platform for several scientific and technological research endeavors:

  • A sailplane can maneuver precisely at very high altitudes to traverse or remain relatively stationary in a desired portion of the wave structure, as the structure is determined in flight.
  • A sailplane can remain on station for several hours to record the evolution of the wave.
  • A sailplane with modern, compact, low power instrumentation makes possible the recording of air mass motion precisely, as well as the collection of samples for later ground analysis or analysis in flight.
  • A sailplane has high strength and great controllability. It is ideal for penetrating breaking waves to determine the turbulence structure and ensuing flight dynamics.
  • A sailplane at 100,000 feet altitude flies in approximately the same aerodynamic regime--Mach and Reynolds numbers--to be experienced by a moderate size aircraft flying near the surface of Mars.
  • A sailplane may carry aerodynamic instrumentation to measure the boundary layer behavior in this regime better than can be done in any wind tunnel.


Phase one of the project was to climb well past the tropopause, into an increasingly strong wave in the stratosphere, not to exceed 62,000 feet (18,900 meters). The record flight of 29 August 2006, which extended 17,000 feet into the stratosphere, accomplished this goal. It was not clear that that wave was increasing in strength, but it was certainly not decreasing. The climb was terminated due to several small but, cumulatively, significant practical difficulties encountered in operating the sailplane in inflated pressure suits. Modeling of the wave showed good agreement with the flight-measured atmospheric motions, and showed the wave increasing strongly at progressively higher altitudes.

Because the record flight of 29 August 2006 proved Enevoldson's thesis, Steve Fossett agreed to fund, progressively, the next phase of the project: to build a pressurized cabin for a special sailplane to fly to 90,000 feet. At the time of Steve's death on 3 September 2007, the structural and aerodynamic design of the fuselage had been completed, along with the aerodynamic design of the entire sailplane. Funding for the remainder of the Perlan Project was lost with Steve's death, and a search for new funding is in progress.

Einar Enevoldson reported in September 2008 that Morgan Sandercock, an experienced sailplane pilot from Australia, has provided funds to re-start the project. It is funding enough to complete the fuselage with pressure cabin and do the structural tests on it. Additional funds will be needed to get back to Patagonia in the Southern Hemisphere winter of 2011.[3]


Einar Enevoldson conceived the project in 1992, after seeing the new LIDAR images of standing mountain waves west of Kiruna, Sweden, that Dr.Wolfgang Renger of the DLR, Oberpffafenhofen, Germany posted on his office wall. Enevoldson collected evidence on the location, prevalence, and strength of stratospheric mountain waves during the period, 1992-1998. Starting in 1998 Dr. Elizabeth Austin expanded the data analysis and put the project on a firm meteorological basis, with the observation that the stratospheric polar night jet was the principal factor enabling the propagation of standing mountain waves high into the middle stratosphere. At this time a small group at the NASA Dryden Flight Research Center analysed the flight dynamics and aerodynamics of sailplane flight up to 100,000 feet. In 1999 Steve Fossett heard that Enevoldson was trying to find funding, and immediately asked to join the project. United States Air Force, on the basis of NASA request, loaned the Perlan Project full pressure suits. A DG 505M sailplane was modified to remove all engine and related equipment and the space used for storage of liquid oxygen and a large supply of LiSO2 primary batteries. Most of the instruments and electronics were replaced with equipment suitable for the extreme altitudes that the sailplane would encounter. Duncan Cummings, of San Pedro California, built special, lightweight, efficient, reliable faceplate heat controllers. Butler Parachute Company built special high altitude stabilized parachutes.

Enevoldson and Fossett flew the sailplane from California City for shakedown and preliminary high altitude flights in the Sierra Nevada of California, reaching over 42,000 feet in Spring 2002. In Summer 2002 the sailplane was shipped to Omarama, New Zealand, where it flew during three winters without reaching the stratosphere. The timing was too early in the season.

In 2005 the sailplane was shipped to El Calafate, Argentina, a small town at 50o south latitude. Five attempts in a three-week period, none in favorable weather conditions, were unsuccessful. In 2006 the forecast offered very favorable conditions on 28 August but at 33,000 feet, in a strong climb, Steve Fossett's pressure suit inflated prematurely and excessively, and the flight was aborted. The next day, on 29 August, after one of the pressure suit regulators had been changed, the weather conditions were still favorable, the team made another attempt. After a four-hour climb Enevoldson and Fossett reached the record altitude, and with that, they learned a great many new lessons. The concept had been validated.


The new sailplane awaits funding. A great deal of design work has been done by Greg Cole of Windward Performance to show that a sailplane for 90,000 feet is relatively straightforward, while 100,000 feet is possible, although more difficult and expensive. Windward Performance will build the sailplane of high performance pre-preg in production-quality tooling. The sailplane requires relatively high-end design, analysis, and construction, to be flutter-safe at very high true air speeds, and strong enough for the potentially heavy turbulence that could be encountered at 90,000 feet. It must also have well-proven, fail-safe pressurization and cabin air re-cycling systems. Testing of the cabin air re-cycling system will continue on minimum funding until the Perlan Project finds new sponsorship.

External links

Press Release for August 29, 2006

"Into the Stratosphere – Without an Engine New world glider altitude record set by Fossett and Enevoldson in Argentina 50,671 feet (15,447 m) achieved by 'Perlan' - the first ever glider flight into the earth's stratosphere. Previous record shattered by 1,662 ft (507 m)". [4] (This claim was subsequently ratified by Federation Aeronautique Internationale as 15,460 meters [50,727 feet]).




Got something to say? Make a comment.
Your name
Your email address