The Full Wiki

Remote sensing: Wikis

Advertisements
  
  
  
  

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Did you know ...


More interesting facts on Remote sensing

Include this on your site/blog:

Encyclopedia

From Wikipedia, the free encyclopedia

Remote sensing is the small or large-scale acquisition of information of an object or phenomenon, by the use of either recording or real-time sensing device(s) that are wireless, or not in physical or intimate contact with the object (such as by way of aircraft, spacecraft, satellite, buoy, or ship). In practice, remote sensing is the stand-off collection through the use of a variety of devices for gathering information on a given object or area. Thus, Earth observation or weather satellite collection platforms, ocean and atmospheric observing weather buoy platforms, the monitoring of a parolee via an ultrasound identification system, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), X-radiation (X-RAY) and space probes are all examples of remote sensing. In modern usage, the term generally refers to the use of imaging sensor technologies including: instruments found in aircraft and spacecraft as well as those used in electrophysiology, and is distinct from other imaging-related fields such as medical imaging.

There are two main types of remote sensing passive remote sensing and active remote sensing. Passive sensors detect natural radiation that is emitted or reflected by the object or surrounding area being observed. Reflected sunlight is the most common source of radiation measured by passive sensors. Examples of passive remote sensors include film photography, Infrared, charge-coupled devices, and radiometers. Active collection, on the other hand, emits energy in order to scan objects and areas whereupon a sensor then detects and measures the radiation that is reflected or backscattered from the target. RADAR is an example of active remote sensing where the time delay between emission and return is measured, establishing the location, height, speed and direction of an object.

Remote sensing makes it possible to collect data on dangerous or inaccessible areas. Remote sensing applications include monitoring deforestation in areas such as the Amazon Basin, the effects of climate change on glaciers and Arctic and Antarctic regions, and depth sounding of coastal and ocean depths. Military collection during the cold war made use of stand-off collection of data about dangerous border areas. Remote sensing also replaces costly and slow data collection on the ground, ensuring in the process that areas or objects are not disturbed.

Orbital platforms collect and transmit data from different parts of the electromagnetic spectrum, which in conjunction with larger scale aerial or ground-based sensing and analysis, provides researchers with enough information to monitor trends such as El Niño and other natural long and short term phenomena. Other uses include different areas of the earth sciences such as natural resource management, agricultural fields such as land usage and conservation, and national security and overhead, ground-based and stand-off collection on border areas.[1]

Contents

Data acquisition techniques

The basis for multi-spectral collection and analysis is that of examined areas or objects that reflect or emit radiation that stand out from surrounding areas.

Advertisements

Applications of remote sensing data

  • Conventional radar is mostly associated with aerial traffic control, early warning, and certain large scale meteorological data. Doppler radar is used by local law enforcements' monitoring of speed limits and in enhanced meteorological collection such as wind speed and direction within weather systems. Other types of active collection includes plasmas in the ionosphere). Interferometric synthetic aperture radar is used to produce precise digital elevation models of large scale terrain (See RADARSAT, TerraSAR-X, Magellan).
  • Laser and radar altimeters on satellites have provided a wide range of data. By measuring the bulges of water caused by gravity, they map features on the seafloor to a resolution of a mile or so. By measuring the height and wave-length of ocean waves, the altimeters measure wind speeds and direction, and surface ocean currents and directions.
  • Light detection and ranging (LIDAR) is well known in the examples of weapon ranging, laser illuminated homing of projectiles.LIDAR discovered by hendy in 1976. LIDAR is used to detect and measure the concentration of various chemicals in the atmosphere, while airborne LIDAR can be used to measure heights of objects and features on the ground more accurately than with radar technology. Vegetation remote sensing is a principle application of LIDAR.
  • Radiometers and photometers are the most common instrument in use, collecting reflected and emitted radiation in a wide range of frequencies. The most common are visible and infrared sensors, followed by microwave, gamma ray and rarely, ultraviolet. They may also be used to detect the emission spectra of various chemicals, providing data on chemical concentrations in the atmosphere.
  • Stereographic pairs of aerial photographs have often been used to make topographic maps by imagery and terrain analysts in trafficability and highway departments for potential routes.
  • Simultaneous multi-spectral platforms such as Landsat have been in use since the 70's. These thematic mappers take images in multiple wavelengths of electro-magnetic radiation (multi-spectral) and are usually found on earth observation satellites, including (for example) the Landsat program or the IKONOS satellite. Maps of land cover and land use from thematic mapping can be used to prospect for minerals, detect or monitor land usage, deforestation, and examine the health of indigenous plants and crops, including entire farming regions or forests.
  • Within the scope of the combat against desertification, remote sensing allows to follow-up and monitor risk areas in the long term, to determine desertification factors, to support decision-makers in defining relevant measures of environmental management, and to assess their impacts.[2]

Geodetic

  • Overhead geodetic collection was first used in aerial submarine detection and gravitational data used in military maps. This data revealed minute perturbations in the Earth's gravitational field (geodesy) that may be used to determine changes in the mass distribution of the Earth, which in turn may be used for geological or hydrological studies.

Acoustic and near-acoustic

  • Passive; Sonar is used for detecting, ranging and measurements of underwater objects and terrain.
  • Seismograms taken at different locations can locate and measure earthquakes (after they occur) by comparing the relative intensity and precise timing.
  • Active; pulses are used by geologists to detect oil fields.

To coordinate a series of large-scale observations, most sensing systems depend on the following: platform location, what time it is, and the rotation and orientation of the sensor. High-end instruments now often use positional information from satellite navigation systems. The rotation and orientation is often provided within a degree or two with electronic compasses. Compasses can measure not just azimuth (i.e. degrees to magnetic north), but also altitude (degrees above the horizon), since the magnetic field curves into the Earth at different angles at different latitudes. More exact orientations require gyroscopic-aided orientation, periodically realigned by different methods including navigation from stars or known benchmarks.

Resolution impacts collection and is best explained with the following relationship: less resolution=less detail & larger coverage, More resolution=more detail, less coverage. The skilled management of collection results in cost-effective collection and avoid situations such as the use of multiple high resolution data which tends to clog transmission and storage infrastructure.

Data processing

Generally speaking, remote sensing works on the principle of the inverse problem. While the object or phenomenon of interest (the state) may not be directly measured, there exists some other variable that can be detected and measured (the observation), which may be related to the object of interest through the use of a data-derived computer model. The common analogy given to describe this is trying to determine the type of animal from its footprints. For example, while it is impossible to directly measure temperatures in the upper atmosphere, it is possible to measure the spectral emissions from a known chemical species (such as carbon dioxide) in that region. The frequency of the emission may then be related to the temperature in that region via various thermodynamic relations.

The quality of remote sensing data consists of its spatial, spectral, radiometric and temporal resolutions.

Spatial resolution
The size of a pixel that is recorded in a raster image - typically pixels may correspond to square areas ranging in side length from 1 to 1,000 metres (3.3 to 3,281 ft).
Spectral resolution
The wavelength width of the different frequency bands recorded - usually, this is related to the number of frequency bands recorded by the platform. Current Landsat collection is that of seven bands, including several in the infra-red spectrum, ranging from a spectral resolution of 0.07 to 2.1 μm. The Hyperion sensor on Earth Observing-1 resolves 220 bands from 0.4 to 2.5 μm, with a spectral resolution of 0.10 to 0.11 μm per band.
Radiometric resolution
The number of different intensities of radiation the sensor is able to distinguish. Typically, this ranges from 8 to 14 bits, corresponding to 256 levels of the gray scale and up to 16,384 intensities or "shades" of colour, in each band.
Temporal resolution
The frequency of flyovers by the satellite or plane, and is only relevant in time-series studies or those requiring an averaged or mosaic image as in deforesting monitoring. This was first used by the intelligence community where repeated coverage revealed changes in infrastructure, the deployment of units or the modification/introduction of equipment. Cloud cover over a given area or object makes it necessary to repeat the collection of said location.


In order to create sensor-based maps, most remote sensing systems expect to extrapolate sensor data in relation to a reference point including distances between known points on the ground. This depends on the type of sensor used. For example, in conventional photographs, distances are accurate in the center of the image, with the distortion of measurements increasing the farther you get from the center. Another factor is that of the platen against which the film is pressed can cause severe errors when photographs are used to measure ground distances. The step in which this problem is resolved is called georeferencing, and involves computer-aided matching up of points in the image (typically 30 or more points per image) which is extrapolated with the use of an established benchmark, "warping" the image to produce accurate spatial data. As of the early 1990s, most satellite images are sold fully georeferenced.

In addition, images may need to be radiometrically and atmospherically corrected.

Radiometric correction
gives a scale to the pixel values, e.g. the monochromatic scale of 0 to 255 will be converted to actual radiance values.
Atmospheric correction
eliminates atmospheric haze by rescaling each frequency band so that its minimum value (usually realised in water bodies) corresponds to a pixel value of 0. The digitizing of data also make possible to manipulate the data by changing gray-scale values.

Interpretation is the critical process of making sense of the data. The first application was that of aerial photographic collection which used the following process; spatial measurement through the use of a light table in both conventional single or stereographic coverage, added skills such as the use of photogrammetry, the use of photomosaics, repeat coverage, Making use of objects' known dimensions in order to detect modifications. Image Analysis is the recently developed automated computer-aided application which is in increasing use.

Object-Based Image Analysis (OBIA) is a sub-discipline of GIScience devoted to partitioning remote sensing (RS) imagery into meaningful image-objects, and assessing their characteristics through spatial, spectral and temporal scale.

Old data from remote sensing is often valuable because it may provide the only long-term data for a large extent of geography. At the same time, the data is often complex to interpret, and bulky to store. Modern systems tend to store the data digitally, often with lossless compression. The difficulty with this approach is that the data is fragile, the format may be archaic, and the data may be easy to falsify. One of the best systems for archiving data series is as computer-generated machine-readable ultrafiche, usually in typefonts such as OCR-B, or as digitized half-tone images. Ultrafiches survive well in standard libraries, with lifetimes of several centuries. They can be created, copied, filed and retrieved by automated systems. They are about as compact as archival magnetic media, and yet can be read by human beings with minimal, standardized equipment.

Data processing levels

To facilitate the discussion of data processing in practice, several processing “levels” were first defined in 1986 by NASA as part of its Earth Observing System [3] and steadily adopted since then, both internally at NASA (e.g., [4]) and elsewhere (e.g., [5]); these definitions are:

Level Description
0 Reconstructed, unprocessed instrument and payload data at full resolution, with any and all communications artifacts (e.g., synchronization frames, communications headers, duplicate data) removed.
1a Reconstructed, unprocessed instrument data at full resolution, time-referenced, and annotated with ancillary information, including radiometric and geometric calibration coefficients and georeferencing parameters (e.g., platform ephemeris) computed and appended but not applied to the Level 0 data (or if applied, in a manner that level 0 is fully recoverable from level 1a data).
1b Level 1a data that have been processed to sensor units (e.g., radar backscatter cross section, brightness temperature, etc.); not all instruments have Level 1b data; level 0 data is not recoverable from level 1b data.
2 Derived geophysical variables (e.g., ocean wave height, soil moisture, ice concentration) at the same resolution and location as Level 1 source data.
3 Variables mapped on uniform space-time grid scales, usually with some completeness and consistency (e.g., missing points interpolated, complete regions mosaicked together from multiple orbits, etc).
4 Model output or results from analyses of lower level data (i.e., variables that were not measured by the instruments but instead are derived from these measurements).

A Level 1 data record is the most fundamental (i.e., highest reversible level) data record that has significant scientific utility, and is the foundation upon which all subsequent data sets are produced. Level 2 is the first level that is directly usable for most scientific applications; its value is much greater than the lower levels. Level 2 data sets tend to be less voluminous than Level 1 data because they have been reduced temporally, spatially, or spectrally. Level 3 data sets are generally smaller than lower level data sets and thus can be dealt with without incurring a great deal of data handling overhead. These data tend to be generally more useful for many applications. The regular spatial and temporal organization of Level 3 datasets makes it feasible to readily combine data from different sources.

History

The TR-1 reconnaissance/surveillance aircraft.
The 2001 Mars Odyssey used spectrometers and imagers to hunt for evidence of past or present water and volcanic activity on Mars.

Beyond the primitive methods of remote sensing our earliest ancestors used (ex.: standing on a high cliff or tree to view the landscape), the modern discipline arose with the development of flight. The balloonist G. Tournachon (alias Nadar) made photographs of Paris from his balloon in 1858. Messenger pigeons, kites, rockets and unmanned balloons were also used for early images. With the exception of balloons, these first, individual images were not particularly useful for map making or for scientific purposes.

Systematic aerial photography was developed for military surveillance and reconnaissance purposes beginning in World War I and reaching a climax during the Cold War with the use of modified combat aircraft such as the P-51, P-38, RB-66 and the F4-C, or specifically designed collection platforms such as the U2/TR-1, SR-71, A-5 and the OV-1 series both in overhead and stand-off collection. A more recent development is that of increasingly smaller sensor pods such as those used by law enforcement and the military, in both manned and unmanned platforms. The advantage of this approach is that this requires minimal modification to a given airframe. Later imaging technologies would include Infra-red, conventional, doppler and synthetic aperture radar.

The development of artificial satellites in the latter half of the 20th century allowed remote sensing to progress to a global scale as of the end of the Cold War. Instrumentation aboard various Earth observing and weather satellites such as Landsat, the Nimbus and more recent missions such as RADARSAT and UARS provided global measurements of various data for civil, research, and military purposes. Space probes to other planets have also provided the opportunity to conduct remote sensing studies in extraterrestrial environments, synthetic aperture radar aboard the Magellan spacecraft provided detailed topographic maps of Venus, while instruments aboard SOHO allowed studies to be performed on the Sun and the solar wind, just to name a few examples.

Recent developments include, beginning in the 1960s and 1970s with the development of image processing of satellite imagery. Several research groups in Silicon Valley including NASA Ames Research Center, GTE and ESL Inc. developed Fourier transform techniques leading to the first notable enhancement of imagery data.

The introduction of online web services for easy access to remote sensing data in the 21st century (mainly low/medium-resolution images), like Google Earth, has made remote sensing more familiar to the big public and has popularized the science.

Remote Sensing software

Remote Sensing data is processed and analyzed with computer software, known as a remote sensing application. A large number of proprietary and open source applications exist to process remote sensing data. According to an NOAA Sponsored Research by Global Marketing Insights, Inc. the most used applications among Asian academic groups involved in remote sensing are as follows: ESRI 30%; ERDAS IMAGINE 25%; ITT Visual Information Solutions ENVI 17%; MapInfo 17%; ERMapper 11%. Among Western Academic respondents as follows: ESRI 39%, ERDAS IMAGINE 27%, MapInfo 9%, AutoDesk 7%, ITT Visual Information Solutions ENVI 17%. Other important Remote Sensing Software packages include PCI Geomatics who makes PCI Geomatica, the leading remote sensing software package in Canada, IDRISI from Clark Labs, and the original object based image analysis software eCognition from Definiens. Open source remote sensing software includes GRASS GIS, QGIS, OSSIM, Opticks (software) and Orfeo toolbox.

See also

References

  1. ^ [1]
  2. ^ Begni Gérard, Escadafal Richard, Fontannaz Delphine and Hong-Nga Nguyen Anne-Thérèse, 2005. Remote sensing: a tool to monitor and assess desertification. Les dossiers thématiques du CSFD. Issue 2. 44 pp.
  3. ^ NASA (1986), Report of the EOS data panel, Earth Observing System, Data and Information System, Data Panel Report, Vol. IIa., NASA Technical Memorandum 87777, June 1986, 62 pp. Available at http://hdl.handle.net/2060/19860021622
  4. ^ C. L. Parkinson, A. Ward, M. D. King (Eds.) Earth Science Reference Handbook -- A Guide to NASA’s Earth Science Program and Earth Observing Satellite Missions, National Aeronautics and Space Administration Washington, D.C. Available at http://eospso.gsfc.nasa.gov/ftp_docs/2006ReferenceHandbook.pdf
  5. ^ GRAS-SAF (2009), Product User Manual, GRAS Satellite Application Facility, Version 1.2.1, 31 March 2009. Available at http://www.grassaf.org/general-documents/products/grassaf_pum_v121.pdf

Further reading

  • Campbell, J.B. (2002). Introduction to remote sensing (3rd ed.). The Guilford Press. ISBN 1-57230-640-8. 
  • Jensen, J.R. (2007). Remote sensing of the environment: an Earth resource perspective (2nd ed.). Prentice Hall. ISBN 0-13-188950-8. 
  • Jensen, J.R. (2005). Digital Image Processing: a Remote Sensing Perspective (3rd ed.). Prentice Hall. 
  • Lentile, Leigh B.; Holden, Zachary A.; Smith, Alistair M. S.; Falkowski, Michael J.; Hudak, Andrew T.; Morgan, Penelope; Lewis, Sarah A.; Gessler, Paul E.; Benson, Nate C.. Remote sensing techniques to assess active fire characteristics and post-fire effects. International Journal of Wildland Fire. 2006;3(15):319-­345.
  • Lillesand, T.M.; R.W. Kiefer, and J.W. Chipman (2003). Remote sensing and image interpretation (5th ed.). Wiley. ISBN 0-471-15227-7. 
  • Richards, J.A.; and X. Jia (2006). Remote sensing digital image analysis: an introduction (4th ed.). Springer. ISBN 3-540-25128-6. 
  • US Army FM series.
  • US Army military intelligence museum, FT Huachuca, AZ

External links


Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message