The Full Wiki

Rod cell: Wikis

Advertisements
  

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Encyclopedia

From Wikipedia, the free encyclopedia

Neuron: Rod cell
Rod cell - Cross section of the retina. Rods are visible at far right.
Cross section of the retina. Rods are visible at far right.
Location Retina
Function Low light photoreceptor
Morphology rod shaped
Presynaptic connections None
Postsynaptic connections Bipolar Cells and Horizontal cells
NeuroLex ID sao1458938856

Rod cells, or rods, are photoreceptor cells in the retina of the eye that can function in less intense light than can the other type of photoreceptor, cone cells. Named for their cylindrical shape, rods are concentrated at the outer edges of the retina and are used in peripheral vision. There are about 90 million rod cells in the human retina. More sensitive than cone cells, rod cells are almost entirely responsible for night vision.

Structure and function

Rods are a little narrower than cones but have the same structural basis. The pigment is on the outer side, lying on the pigment epithelium. This end contains many stacked disks, probably from the folding inward of the limiting membrane surrounding this section. Rods disks have three layers separated by two 3.5 nm spaces; the outer layers are 2 nm, and the middle is 4 nm. The disks are 10-20 nm apart. Frogs are believed to have 1,000 disks in their outer segment.[1] Rods have a high area for visual pigment and thus substantial efficiency of light absorption. Because they have only one type of light-sensitive pigment, rather than the three types that human cone cells have, rods have little, if any, role in color vision.

Like cones, rod cells have a synaptic terminal, an inner segment, and an outer segment. The synaptic terminal forms a synapse with another neuron, for example a bipolar cell. The inner and outer segments are connected by a cilium,[2] which lines the distal segment.[3] The inner segment contains organelles and the cell's nucleus, while the rod outer segment (abbreviated to ROS), which is pointed toward the back of the eye, contains the light-absorbing materials.[2]

Sensitivity

A rod cell is sensitive enough to respond to a single photon of light[citation needed], and is about 100 times more sensitive to a single photon than cones. Rods require less light to function than cones, they are therefore the primary source of visual information at night (scotopic vision). Cone cells, on the other hand, require tens to hundreds of photons to become activated. Additionally, multiple rod cells converge on a single interneuron, collecting and amplifying the signals. However, this convergence comes at a cost to visual acuity (or image resolution) because the pooled information from multiple cells is less distinct than it would be if the visual system received information from each rod cell individually. The convergence of rod cells also tends to make peripheral vision very sensitive to movement, and is responsible for the phenomenon of an individual seeing something vague occur out of the corner of his or her eye.

Rod cells also respond more slowly to light than cones do, so stimuli they receive are added over about 100 milliseconds. While this makes rods more sensitive to smaller amounts of light, it also means that their ability to sense temporal changes, such as quickly changing images, is less accurate than that of cones.[2]

Experiments by George Wald and others showed that rods are most sensitive to wavelengths of light around 498 nm (green-blue), and are completely insensitive to wavelengths longer than about 640 nm (red). This fact is responsible for the Purkinje effect, in which blue colors appear more intense relative to reds at twilight, when rods take over as the cells responsible for vision.

Response to light

Anatomy of a Rod Cell[4]

In vertebrates, activation of a photoreceptor cell is actually a hyperpolarization (inhibition) of the cell. When they are not being stimulated, such as in the dark, rod cells and cone cells depolarize and release a neurotransmitter spontaneously. This neurotransmitter hyperpolarizes the bipolar cell. Bipolar cells exist between photoreceptors and ganglion cells and act to transmit signals from the photoreceptors to the ganglion cells. As a result of the bipolar cell being hyperpolarized, it does not release its transmitter at the bipolar-ganglion synapse and the synapse is not excited.

Activation of photopigments by light sends a signal by hyperpolarizing the rod cell, leading to the rod cell not sending its neurotransmitter, which leads to the bipolar cell then releasing its transmitter at the bipolar-ganglion synapse and exciting the synapse.

Depolarization of rod cells (causing release of their neurotransmitter) occurs because in the dark, cells have a relatively high concentration of cyclic guanosine 3'-5' monophosphate (cGMP), which opens ion channels (largely sodium channels, though calcium can enter through these channels as well). The positive charges of the ions that enter the cell down its electrochemical gradient change the cell's membrane potential, cause depolarization, and lead to the release of the neurotransmitter glutamate. Glutamate can depolarize some neurons and hyperpolarize others, allowing photoreceptors to interact in an antagonistic manner.

When light hits photoreceptive pigments within the photoreceptor cell, the pigment changes shape. The pigment, called rhodopsin (photopsin is found in cone cells) comprises a large protein called opsin (situated in the plasma membrane), attached to which is a covalently-bound prosthetic group: an organic molecule called retinal (a derivative of vitamin A). The retinal exists in the 11-cis-retinal form when in the dark, and stimulation by light causes its structure to change to all-trans-retinal. This structural change causes a series of changes in the opsin that ultimately lead it to activate a regulatory protein called transducin (a type of G protein), which leads to the activation of cGMP phosphodiesterase, which breaks cGMP down into 5'-GMP. Reduction in cGMP allows the ion channels to close, preventing the influx of positive ions, hyperpolarizing the cell, and stopping the release of neurotransmitters (Kandel et al., 2000). Though cone cells primarily use the neurotransmitter substance acetylcholine, rod cells use a variety. The entire process by which light initiates a sensory response is called visual phototransduction.

Activation of a single unit of rhodopsin, the photosensitive pigment in rods, can lead to a large reaction in the cell because the signal is amplified. Once activated, rhodopsin can activate hundreds of transducin molecules, each of which in turn activates a phosphodiesterase molecule, which can break down over a thousand cGMP molecules per second (Kandel et al. 2000). Thus, rods can have a large response to a small amount of light.

As the retinal component of rhodopsin is derived from vitamin A, a deficiency of vitamin A causes a deficit in the pigment needed by rod cells. Consequently, fewer rod cells are able to sufficiently respond in darker conditions, and as the cone cells are poorly adapted for sight in the dark, blindness can result. This is night-blindness.

Advertisements

Revert to the resting state

Rods make use of three inhibitory mechanisms (negative feedback mechanisms) to allow a rapid revert to the resting state after a flash of light.

Firstly, there exists a rhodopsin kinase (RK) which would phosphorylate the cytosolic tail of the activated rhodopsin on the multiple serines, partially inhibiting the activation of transducin. Also, an inhibitory protein - arrestin then binds to the phosphorylated rhodopsins to further inhibit the rhodopsin's activity.

While arrestin shuts off rhodopsin, an RGS protein (functioning as a GTPase-activating proteins(GAPs)) drives the transducin (G-protein) into an "off" state by increasing the rate of hydrolysis of the bounded GTP to GDP.

Also as the cGMP sensitive channels allow not only the influx of sodium ions, but also calcium ions, with the decrease in concentration of cGMP, cGMP sensitive channels are then closed and reducing the normal influx of calcium ions. The decrease in the concentration of calcium ions stimulates the calcium ion-sensitive proteins, which would then activate the guanylyl cyclase to replenish the cGMP, rapidly restoring its original concentration. The restoration opens the cGMP sensitive channels and causes a depolarization of the plasma membrane.[5]

Desensitization

When the rods are exposed to a high concentration of photons for a prolonged period, they become desensitized (adapted) to the environment.

As rhodopsin is phosphorylated by rhodopsin kinase (a member of the GPCR kinases(GRKs)), it binds with high affinity to the arrestin. The bound arrestin can contribute to the desensitization process in at least two ways. First, it prevents the interaction between the G protein and the activated receptor. Second, it serves as an adaptor protein to aid the receptor to the clathrin-dependent endocytosis machinery (to induce receptor-mediated endocytosis).[5]

References

  1. ^ "Photoreception" McGraw-Hill Encyclopedia of Science & Technology, vol. 13, p.460 2007
  2. ^ a b c Kandel E.R., Schwartz, J.H., Jessell, T.M. (2000). Principles of Neural Science, 4th ed., pp.507-513. McGraw-Hill, New York.
  3. ^ "Photoreception" McGraw-Hill Encyclopedia of Science & Technology, vol. 13, p.460 2007
  4. ^ Human Physiology and Mechanisms of Disease by Arthur C. Guyton (1992) p.373
  5. ^ a b Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2008). Molecular Biology of The Cell, 5th ed., pp.919-921. Garland Science.

External links

See also


Simple English

Rod cells are one of two types of photoreceptor cells that can be found in the retina of the eyes of humans, as well as other animals. The other type are the cone cells. Rod cells are very sensitive to light. They allow night vision. They are concentated at the edge of the retina, where they also allow peripheral vision. There are about 120 million of them in the human eye.


Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message