The Full Wiki

More info on SLC2A9

SLC2A9: Wikis

Advertisements

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Encyclopedia

From Wikipedia, the free encyclopedia

edit
Solute carrier family 2 (facilitated glucose transporter), member 9
Identifiers
Symbols SLC2A9; GLUT9; GLUTX
External IDs OMIM606142 MGI2152844 HomoloGene69290 GeneCards: SLC2A9 Gene
RNA expression pattern
PBB GE SLC2A9 219991 at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 56606 117591
Ensembl ENSG00000109667 ENSMUSG00000005107
UniProt Q9NRM0 n/a
RefSeq (mRNA) NM_001001290 NM_001012363
RefSeq (protein) NP_001001290 NP_001012363
Location (UCSC) Chr 4:
9.44 - 9.65 Mb
Chr 5:
38.64 - 38.79 Mb
PubMed search [1] [2]

Solute carrier family 2, facilitated glucose transporter member 9 is a protein that in humans is encoded by the SLC2A9 gene.[1][2][3]

This gene encodes a member of the SLC2A facilitative glucose transporter family. Members of this family play a significant role in maintaining glucose homeostasis. The encoded protein may play a role in the development and survival of chondrocytes in cartilage matrices. Two transcript variants encoding distinct isoforms have been identified for this gene.[3]

SLC2A9 has also recently been found to transport uric acid, and genetic variants of the transporter have been linked to increased risk of development of both hyperuricemia and gout.[4][5]

See also

References

  1. ^ Phay JE, Hussain HB, Moley JF (Aug 2000). "Cloning and expression analysis of a novel member of the facilitative glucose transporter family, SLC2A9 (GLUT9)". Genomics 66 (2): 217-20. doi:10.1006/geno.2000.6195. PMID 10860667.  
  2. ^ Manolescu AR, Augustin R, Moley K, Cheeseman C (Aug 2007). "A highly conserved hydrophobic motif in the exofacial vestibule of fructose transporting SLC2A proteins acts as a critical determinant of their substrate selectivity". Mol Membr Biol 24 (5-6): 455-63. doi:10.1080/09687680701298143. PMID 17710649.  
  3. ^ a b "Entrez Gene: SLC2A9 solute carrier family 2 (facilitated glucose transporter), member 9". http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=56606.  
  4. ^ Vitart V, Rudan I, Hayward C, et al. (2008). "SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout". Nature Genetics 40 (4): 437. doi:10.1038/ng.106.  
  5. ^ Döring A, Gieger C, Mehta D, et al. (2008). "SLC2A9 influences uric acid concentrations with pronounced sex-specific effects". Nature Genetics 40 (4): 430. doi:10.1038/ng.107.  

Further reading

  • Doege H, Bocianski A, Joost HG, Schürmann A (2001). "Activity and genomic organization of human glucose transporter 9 (GLUT9), a novel member of the family of sugar-transport facilitators predominantly expressed in brain and leucocytes.". Biochem. J. 350 Pt 3: 771–6. PMID 10970791.  
  • Shikhman AR, Brinson DC, Valbracht J, Lotz MK (2001). "Cytokine regulation of facilitated glucose transport in human articular chondrocytes.". J. Immunol. 167 (12): 7001–8. PMID 11739520.  
  • Mobasheri A, Neama G, Bell S, et al. (2002). "Human articular chondrocytes express three facilitative glucose transporter isoforms: GLUT1, GLUT3 and GLUT9.". Cell Biol. Int. 26 (3): 297–300. doi:10.1006/cbir.2001.0850. PMID 11991658.  
  • Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMID 12477932.  
  • Richardson S, Neama G, Phillips T, et al. (2003). "Molecular characterization and partial cDNA cloning of facilitative glucose transporters expressed in human articular chondrocytes; stimulation of 2-deoxyglucose uptake by IGF-I and elevated MMP-2 secretion by glucose deprivation.". Osteoarthr. Cartil. 11 (2): 92–101. doi:10.1053/joca.2002.0858. PMID 12554125.  
  • Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs.". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039.  
  • Augustin R, Carayannopoulos MO, Dowd LO, et al. (2004). "Identification and characterization of human glucose transporter-like protein-9 (GLUT9): alternative splicing alters trafficking.". J. Biol. Chem. 279 (16): 16229–36. doi:10.1074/jbc.M312226200. PMID 14739288.  
  • Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMID 15489334.  

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

Advertisements

Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message