The Full Wiki

Salinization: Wikis

Advertisements

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Encyclopedia

(Redirected to Soil salinity article)

From Wikipedia, the free encyclopedia

Salt-affected soils are visible on rangeland in Colorado. Salts dissolved from the soil accumulate at the soil surface and are deposited on the ground and at the base of the fence post.

Soil salinity is the salt content in the soil.[1]

Contents

Causes of soil salinity

Salt affected soils are caused by excess accumulation of salts, typically most pronounced at the soil surface. Salts can be transported to the soil surface by capillary transport from a salt laden water table and then accumulate due to evaporation; they can also be concentrated in soils due to human activity. As soil salinity increases, salt effects can result in degradation of soils and vegetation.

Salinization is a process that results from:

  • high levels of salt in the soils.
  • landscape features that allow salts to become mobile. (movement of water table)
  • climatic trends that favor accumulation.
  • human activities such as land clearing and aquaculture activities.

Natural occurrence

Salt is a natural element of soils and water. The ions responsible for salinization are: Na+, K+, Ca2+, Mg2+ and Cl-.
As the Na+ (sodium) predominates, soils can become sodic. Sodic soils present particular challenges because they tend to have very poor structure which limits or prevents water infiltration and drainage.

Over eons, as soil minerals weather and release salts, these salts are flushed or leached out of the soil by drainage water in areas with sufficient precipitation. In addition to mineral weathering, salts are also deposited via dust and precipitation. In dry regions salts may accumulate, leading to naturally saline soils. This is the case, for example, in large parts of Australia. Human practices can increase the salinity of soils by the addition of salts in irrigation water. Proper irrigation management can prevent salt accumulation by providing adequate drainage water to leach added salts from the soil. Disrupting drainage patterns that provide leaching can also result in salt accumulations. An example of this occurred in Egypt in 1970 when the Aswan High Dam was built. The change in the level of ground water before the construction had enabled soil erosion, which led to high concentration of salts in the water table. After the construction, the continuous high level of the water table led to the salination of the arable land.

Dry land salinity

Salinity in drylands can occur when the water table is between two to three metres from the surface of the soil. The salts from the groundwater are raised by capillary action to the surface of the soil. This occurs when groundwater is saline (which is true in many areas), and is favored by land use practices allowing more rainwater to enter the aquifer than it could accommodate. For example, the clearing of trees for agriculture is a major reason for dryland salinity in some areas, since deep rooting of trees has been replaced by shallow rooting of annual crops.

Salinity due to irrigation

Rain or irrigation, in the absence of leaching, can bring salts to the surface by capillary action

Salinity from irrigation can occur over time wherever irrigation occurs, since almost all water (even natural rainfall) contains some dissolved salts. When the plants use the water, the salts are left behind in the soil and eventually begin to accumulate. Since soil salinity makes it more difficult for plants to absorb soil moisture, these salts must be leached out of the plant root zone by applying additional water. This water in excess of plant needs is called the leaching fraction. Salination from irrigation water is also greatly increased by poor drainage and use of saline water for irrigating agricultural crops.

Salinity in urban areas often results from the combination of irrigation and groundwater processes. Irrigation is also now common in cities (gardens and recreation areas).

Consequences of salinity

The consequences of salinity are

  • detrimental effects on plant growth and yield
  • damage to infrastructure (roads, bricks, corrosion of pipes and cables)
  • reduction of water quality for users, sedimentation problems
  • soil erosion ultimately, when crops are too strongly affected by the amounts of salts.

Salinity is an important land degradation problem. Soil salinity can be reduced by leaching soluble salts out of soil with excess irrigation water. High levels of soil salinity can be tolerated if salt-tolerant plants are grown. A comprehensive treatment of soil salinity is available from the FAO[2].

Regions affected

From the FAO/UNESCO Soil Map of the World the following salinised areas can be derived.[3]

Renewable energy
Wind Turbine

Biofuel
Biomass
Geothermal
Hydroelectricity
Solar energy
Tidal power
Wave power
Wind power

Region Area (106ha)
Africa 69.5
Near and Middle East 53.1
Asia and Far East 19.5
Latin America 59.4
Australia 84.7
North America 16.0
Europe 20.7

Theoretical alternative energy source

Salination is theoretically an alternative energy source. The mixing of fresh and salty water releases energy; this means that devices could be located at points where fresh water enters the ocean in order to harness the energy.[4]

References

See also

External links

Advertisements

Redirecting to Soil salinity


Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message