The Full Wiki

Schwann cell: Wikis

Advertisements
  
  

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Encyclopedia

From Wikipedia, the free encyclopedia

Structure of a typical neuron
Schwann cell in relation to a neuron

Schwann cells are glia of the peripheral nervous system (PNS). They are involved in many important aspects of peripheral nerve biology; the conduction of nervous impulses along axons, nerve development and regeneration, trophic support for neurons, production of the nerve extracellular matrix and presentation of antigens to T-lymphocytes. Charcot-Marie-Tooth disease (CMT), Guillain-Barré syndrome (GBS), schwannomatosis and chronic inflammatory demyelinating polyneuropathy (CIDP) are all neuropathies involving Schwann cells.

Contents

Description

Schwann cell.
A Schwann cell in culture.

Named after the German physiologist Theodor Schwann, Schwann cells (also referred to as neurolemnocytes) are a variety of glial cell that keep peripheral nerve fibres (both myelinated and unmyelinated) alive. In myelinated axons, Schwann cells form the myelin sheath (see above). The sheath is not continuous. Individual myelinating Schwann cells cover about 100 micrometres of an axon, which can be up to a metre or more in length. The end result is a string of Schwann cells along the length of the axon, much like a string of sausages. The gaps between adjacent Schwann cells are called the nodes of Ranvier (see above). The vertebrate nervous system relies on the myelin sheath for insulation and as a method of decreasing membrane capacitance in the axon. The action potential jumps from node to node, in a process called saltatory conduction, which can increase conduction velocity up to ten times, without an increase in axonal diameter. In this sense, Schwann cells are the peripheral nervous system's analogues of the central nervous system's oligodendrocytes. However, unlike oligodendrocytes, each myelinating Schwann cell provides insulation to only one axon (see image). This arrangement permits saltatory conduction of action potentials with repropagation at the nodes of Ranvier, the gaps between myelinated segments. In this way, myelination greatly increases speed of conduction and saves energy.[1]

Non-myelinating Schwann cells are involved in maintenance of axons and are crucial for neuronal survival. Some group around smaller axons and form Remak bundles.[2]

Myelinating Schwann cells begin to form the myelin sheath in mammals during fetal development and work by spiraling around the axon, sometimes with as many as 100 revolutions. A well-developed Schwann cell is shaped like a rolled-up sheet of paper, with layers of myelin in between each coil. The inner layers of the wrapping, which are predominantly membrane material, form the myelin sheath while the outermost layer of nucleated cytoplasm forms the neurolemma. Only a small volume of residual cytoplasm communicates the inner from the outer layers. This is seen histologically as the Schmidt-Lantermann incisure. Since each Schwann cell can cover about a millimeter (0.04 inches) along the axon, hundreds and often thousands are needed to completely cover an axon, which can sometimes span the length of the body.

A number of experimental studies since 2001 have implanted Schwann cells in an attempt to induce remyelination in multiple sclerosis-afflicted patients [3]. Indeed, Schwann cells are known for their roles in supporting nerve regeneration.[4] Nerves in the PNS consist of many axons myelinated by Schwann cells. If damage occurs to a nerve, the Schwann cells will aid in digestion of its axons (phagocytosis). Following this process, the Schwann cells can guide regeneration by forming a type of tunnel that leads toward the target neurons. The stump of the damaged axon is able to sprout, and those sprouts that grow through the Schwann-cell “tunnel” do so at the rate of approximately 1mm/day in good conditions. The rate of regeneration decreases with time. Successful axons can therefore reconnect with the muscles or organs they previously controlled with the help of Schwann cells, however, specificity is not maintained and errors are frequent, especially when long distances are involved. [5] If Schwann cells are prevented from associating with axons, the axons die. Regenerating axons will not reach any target unless Schwann cells are there to support them and guide them. They have been shown to be in advance of the growth cones. Schwann cells are absolutely essential for the maintenance of healthy axons. They produce a variety of factors, including neurotrophins, and also transfer essential molecules across to axons.

Schwann cell lineage

Schwann cells are of neural crest origin. During mouse embryonic development, neural crest cells first differentiate into Schwann cell precursors (SCPs) at around embryonic day (E) 12-13. These precursor cells subsequently differentiate into immature Schwann cells at approximately E15-16, persisting until birth. The postnatal fate of the immature Schwann cell depends on its random association with axons. In a process called radial sorting, whereby Schwann cells segregate axons by extending processes into axon bundles, the Schwann cells that happen to associate with a large diameter axon (>1 μm) will develop into myelinating Schwann cells. Small diameter axons become entrenched in the invaginations of non-myelinating Schwann cells, also called Remak bundles. A further class of non-myelinating Schwann cell, the terminal (or perisynaptic) Schwann cell, exists at the neuromuscular junction, in close proximity to the neuron-muscle synapse. The transition from immature Schwann cell to myelinating/non-myelinating Schwann cell is reversible. When the nerve is injured, Schwann cells can dedifferentiate and re-enter the cell cycle in order to proliferate and aid nerve regeneration.[6]

Histology

Myelinating Schwann cells can be visualised by immunohistochemistry using antibodies against the proteins S-100, glial fibrillary acidic protein (GFAP), myelin protein zero (P-zero) and myelin basic protein. Non-myelinating Schwann cells such as those that form Remak bundles and terminal Schwann cells stain positive for S-100 and GFAP.

See Also

References

  1. ^ Kalat, James W. Biological Psychology, 9th ed. USA: Thompson Learning, 2007.
  2. ^ http://focus.hms.harvard.edu/2003/Oct24_2003/neurology.html
  3. ^ http://www.findarticles.com/p/articles/mi_m0850/is_4_19/ai_79957646
  4. ^ http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16807057&query_hl=3&itool=pubmed_docsum
  5. ^ Carlson, Neil R. Physiology of Behavior, 9th ed. USA: Pearson Education, Inc., 2007.
  6. ^ Jessen, K. R. & Mirsky, R. (2005), "The origin and development of glial cells in peripheral nerves", Nature Reviews Neuroscience 6 (9): 671–682, doi:10.1038/nrn1746, PMID 16136171 .

External links

Advertisements

Wiktionary

Up to date as of January 14, 2010

Definition from Wiktionary, a free dictionary

English

Etymology

After their discoverer Theodor Schwann (1810–1882), German physiologist.

Noun

Singular
Schwann cell

Plural
Schwann cells

Schwann cell (plural Schwann cells)

Wikipedia-logo.png
Wikipedia has an article on:

Wikipedia

  1. Glia of the peripheral nervous system involved in many important aspects of peripheral nerve biology.

Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message