The Full Wiki

More info on Selective sweep

Selective sweep: Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.


From Wikipedia, the free encyclopedia

A selective sweep is the reduction or elimination of variation among the nucleotides in neighbouring DNA of a mutation as the result of recent and strong positive natural selection.

A selective sweep can occur when a new mutation occurs that increases the fitness of the carrier relative to other members of the population. Natural selection will favour individuals that have a higher fitness and with time the newly mutated variant (allele) will increase in frequency relative to other alleles. As its prevalence increases, neutral and nearly neutral genetic variation linked to the new mutation will also become more prevalent. This phenomenon is called genetic hitchhiking. A strong selective sweep results in a region of the genome where the positively selected haplotype (the mutated allele and its neighbours) is essentially the only one that exists in the population, resulting in a large reduction of the total genetic variation in that chromosome region.

Detecting selective sweeps

Whether or not a selective sweep has occurred can be investigated in various ways. One method is to measure linkage disequilibrium, i.e., whether a given haplotype is overrepresented in the population. Under neutral evolution, genetic recombination will result in the reshuffling of the different alleles within a haplotype, and no single haplotype will dominate the population. However, during a selective sweep, selection for a positively selected gene variant will also result in selection of neighbouring alleles and less opportunity for recombination. Therefore, the presence of strong linkage disequilibrium might indicate that there has been a recent selective sweep, and can be used to identify sites recently under selection.

A study of genetic variation among 269 humans found evidence for selective sweeps on chromosomes 1, 2, 4, 8, 12, and 22 [1].

In maize, a recent comparison of yellow and white corn genotypes surrounding Y1 - the phytoene synthetase gene responsible for the yellow endosperm color, shows strong evidence for a selective sweep in yellow germplasm reducing diversity at this locus and linkage disequilibrium in surrounding regions. White maize lines had increased diversity and no evidence of linkage disequilibrium associated with a selective sweep. [2]

See also


  1. ^ "A haplotype map of the human genome" (2005) by the International HapMap Consortium in Nature Volume 437, pages 1299-1320. Entrez Pubmed 16255080
  2. ^ Kelly Palaisa, Michele Morgante, Scott Tingey, and Antoni Rafalski.2004. Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. PNAS. 101:9885-9890.


Got something to say? Make a comment.
Your name
Your email address