Semitone: Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.


From Wikipedia, the free encyclopedia

Inverse major seventh (for minor second); diminished octave (for augmented unison); augmented octave (for diminished unison)
Other names minor second
or diatonic semitone;
augmented unison and diminished unison
or chromatic semitone
Abbreviation m2; aug1
Semitones 1
Interval class 1
Just interval 16:15; 25:24 (and others)
Equal temperament 100
24 tone equal temperament 100
Just intonation 112; 71 (and others)
Minor second About this sound Play
Augmented unison

A semitone, also called a half step or a half tone,[1] is the smallest musical interval commonly used in Western tonal music,[2] and it is considered the most dissonant.[3]

In music theory, a distinction is made between a minor second' or diatonic semitone (e.g. C to D), and a chromatic semitone or augmented unison (e.g. C to C).

In twelve-tone equal temperament all semitones are equal in size. Any equal-tempered interval can be defined in terms of an appropriate number of semitones (e.g. an octave is 12 semitones wide). In other tuning systems the term "semitone" refers to a family of intervals which may vary both in size and name.

The diminished unison also exists, being the inverse of the augmented octave, though some theorists reject the term. [4][5][6]

A diatonic semitone may further be distinguished into a major diatonic semitone, 15:14 or 119 cents, and a minor diatonic semitone, 17:16 or 105 cents.[7] The minor diatonic semitone may be derived from the harmonic series as the interval between the sixteenth and seventeenth harmonics.

About this sound Listen to a minor second in equal temperament . Here, middle C is followed by D, which is a tone 100 cents sharper than C, and then by both tones together.


Minor second

The melodic minor second is an integral part of most cadences of the Common practice period.

The minor second occurs in the major scale, between the third and fourth degree, (mi (E) and fa (F) in C major), and between the seventh and eighth degree (ti (B) and do (C) in C major). It is also called the diatonic semitone because it occurs between steps in the diatonic scale. The minor second is abbreviated m2. Its inversion is the major seventh (M7).

Melodically, this interval is very frequently used, and is of particular importance in cadences. In the perfect and deceptive cadences it appears as a resolution of the leading-tone to the tonic. In the plagal cadence, it appears as the falling of the subdominant to the mediant. It also occurs in many forms of the imperfect cadence, wherever the tonic falls to the leading-tone.

Harmonically, the interval usually occurs as some form of dissonance or a nonchord tone that is not part of the functional harmony. It may also appear in inversions of a major seventh chord, and in many added tone chords.

A harmonic minor second in J.S. Bach's Prelude in C major from the WTC book 1, mm. 7-9. The minor second may be viewed as a suspension of the B resolving into the following A minor seventh chord.
The opening measures of Frédéric Chopin's "wrong note" Étude.

In unusual situations, the minor second can add a great deal of character to the music. For instance, Frédéric Chopin's Étude Op. 25, No. 5 opens with a melody accompanied by a line that plays fleeting minor seconds. These are used to humorous and whimsical effect, which contrasts with its more lyrical middle section. This eccentric dissonance has earned the piece its nickname: the "wrong note" étude. This kind of usage of the minor second appears in many other works of the Romantic period, such as Modest Mussorgsky's Ballet of the Unhatched Chicks.

Augmented unison

Augmented unisons often appear as a consequence of secondary dominants, such as those in the soprano voice of this sequence from Felix Mendelssohn's Song Without Words Op. 102 No. 3, mm. 47-49.

The augmented unison does not occur between diatonic scale steps, but instead between a scale step and a chromatic alteration of the same step. It is also called a chromatic semitone. The augmented unison is abbreviated aug 1. Its inversion is the diminished octave (dim 8).

Melodically, an augmented unison very frequently occurs when proceeding to a chromatic chord, such as a secondary dominant, a diminished seventh chord, or an augmented sixth chord. Its use is also often the consequence of a melody proceeding in semitones, regardless of harmonic underpinning, e.g. D, D, E, F, F. (Restricting the notation to only minor seconds is impractical, as the same example would have a rapidly increasing number of accidentals, written enharmonically as D, E, F, G, A).

Franz Liszt's second Transcendental Etude, measure 63.

Harmonically, augmented unisons are quite rare in tonal repertoire. In the example to the right, Liszt had written an E against an E in the bass. Here E was preferred to a D to make the tone's function clear as part of an F dominant seventh chord, and the augmented unison is the result of superimposing this harmony upon an E pedal point.

In addition to this kind of usage, harmonic augmented unisons are frequently written in modern works involving tone clusters, such as Iannis Xenakis' Evryali for piano solo.

The same spelling can also be refered to as a diminished unison in certain contexts[4][5]


The semitone appeared in the music theory of Greek antiquity as part of a diatonic tetrachord, and it has always had a place in the diatonic scales of Western music since. The various modal scales of medieval music theory were all based upon this diatonic pattern of tones and semitones.

Though it would later become an integral part of the musical cadence, in the early polyphony of the 11th century this was not the case. Guido of Arezzo suggested instead in his Micrologus other alternatives: either proceeding by whole tone from a major second to a unison, or an occursus having two notes at a major third move by contrary motion toward a unison, each having moved a whole tone.

“As late as the 13th century the half step was experienced as a problematic interval not easily understood, as the irrational [sic] remainder between the perfect fourth and the ditone (\begin{matrix} \frac{4}{3} \end{matrix} / {{\begin{matrix} (\frac{9}{8}) \end{matrix}}^2} = \begin{matrix} \frac{256}{243} \end{matrix} ).” In a melodic half step, no “tendency was perceived of the lower tone toward the upper, or of the upper toward the lower. The second tone was not taken to be the ‘goal’ of the first. Instead, the half step was avoided in clausulae because it lacked clarity as an interval.” [8]

A dramatic chromatic scale in the opening measures of Luca Marenzio's Solo e pensoso, ca. 1580. ( Loudspeaker.svg Listen )

However, beginning in the 13th century cadences begin to require motion in one voice by half step and the other a whole step in contrary motion[8]. These cadences would become a fundamental part of the musical language, even to the point where the usual accidental accompanying the minor second in a cadence was often omitted from the written score (a practice known as musica ficta). By the 16th century, the semitone had become a more versatile interval, sometimes even appearing as an augmented unison in very chromatic passages.

By the Baroque era, the tonal harmonic framework was fully formed, and the various musical functions of the semitone were rigorously understood. Later in this period the adoption of well temperaments for instrumental tuning and the more frequent use of enharmonic equivalences increased the ease with which a semitone could be applied. Its function remained similar through the Classical period, and though it was used more frequently as the language of tonality became more chromatic in the Romantic period, the musical function of the semitone did not change.

In the 20th century, however, composers such as Arnold Schoenberg, Bela Bartok, and Igor Stravinsky sought alternatives or extensions of tonal harmony, and found other uses for the semitone. Often the semitone was exploited harmonically as a caustic dissonance, having no resolution. Some composers would even use large collections of harmonic semitones (tone clusters) as a source of cacophony in their music (e.g. the early piano works of Henry Cowell). By now, enharmonic equivalence was a commonplace property of equal temperament, and instrumental use of the semitone was not at all problematic for the performer. The composer was free to write semitones wherever he wished.

This excerpt from the first of Arnold Schoenberg's Three Piano Pieces, Op. 11 (m. 40) demonstrates completely unrestrained use of the semitone and related intervals. ( Loudspeaker.svg Listen )

Semitones in different tunings

The exact size of a semitone depends on the tuning system used. Meantone temperaments have two distinct types of semitones, but in the exceptional case of Equal temperament, there is only one. The unevenly distributed well temperaments contain many different semitones. Pythagorean tuning, similar to meantone tuning, has two, but in other systems of just intonation there are many more possibilities.


Meantone temperament

In meantone systems, there are two different semitones. This results because of the break in the circle of fifths that occurs in the tuning system: diatonic semitones derive from a chain of five fifths that does not cross the break, and chromatic semitones come from one that does.

The chromatic semitone is usually smaller than the diatonic. In the common quarter-comma meantone, tuned as a cycle of tempered fifths from E to G, the chromatic and diatonic semitones are 76.0490 and 117.108 cents wide respectively.

Chromatic semitone 76.05 76.05 76.05 76.05 76.05
Pitch C C D E E F F G G A B B C
Cents 0.000 76.05 193.2 310.3 386.3 503.4 579.5 696.6 772.6 889.7 1007 1083 1200
Diatonic semitone 117.1 117.1 117.1 117.1 117.1 117.1 117.1

Extended meantone temperaments with more than 12 notes still retain the same two semitone sizes, but there is more flexibility for the musician about whether to use an augmented unison or minor second. 31-tone equal temperament is the most flexible of these, which makes an unbroken circle of 31 fifths, allowing the choice of semitone to be made for any pitch.

Equal temperament

12-tone equal temperament is actually a form of meantone tuning in which the diatonic and chromatic semitones are exactly the same, because its circle of fifths has no break. Each semitone is equal to one twelfth of an octave. This is a ratio of 21/12 (approximately 1.0594630943592952645618252949463), or 100 cents, and is 11.7313 cents narrower than the 16:15 ratio (its most common form in just intonation, discussed below).

All diatonic intervals can be expressed as an equivalent number of semitones. For instance a whole tone equals two semitones.

There are many approximations, rational or otherwise, to the equal tempered semitone. To cite a few:

  • See also Pythagorean and Just systems of tuning below for more examples.

Well temperament

There are many forms of well temperament, but the characteristic they all share is that their semitones are of an uneven size. Every semitone in a well temperament has its own interval (usually close to the equal tempered version of 100 cents), and there is no clear distinction between a diatonic and chromatic semitone in the tuning. Well temperament was constructed so that enharmonic equivalence could be assumed between all of these semitones, and whether they were written as a minor second or augmented unison did not effect a different sound. Instead, in these systems, each key had a slightly different sonic color or character, beyond the limitations of conventional notation.

Pythagorean tuning

Like meantone temperament, Pythagorean tuning is a broken circle of fifths. This creates two distinct semitones, but because Pythagorean tuning is also a form of 3-limit just intonation, these semitones are rational. Also, unlike most meantone temperaments, the chromatic semitone is larger than the diatonic.

The Pythagorean diatonic semitone has a ratio of 256/243 (About this sound play ), and is often called the Pythagorean lemma. It is also sometimes called the Pythagorean minor semitone.

\frac{256}{243} = \frac{2^8}{3^5} \approx 90.2250_{cents}

The Pythagorean chromatic semitone has a ratio of 2187/2048 (About this sound play ). It may also be called the Pythagorean apotome or the Pythagorean major semitone. (See Pythagorean interval.)

\frac{2187}{2048} = \frac{3^7}{2^{11}} \approx 113.685_{cents}

Just intonation

A minor second in just intonation most often corresponds to a pitch ratio of 16:15 (About this sound play ) or 1.0666... (approximately 111.731 cents), called the just diatonic semitone. This is the most practical just semitone, as it is the difference between a perfect fourth and major third (\tfrac{4}{3} \div \tfrac{5}{4} = \tfrac{16}{15} ). In 5-limit just intonation, there is another semitone of 25:24 (About this sound play ) available between two major thirds (25:16) and a perfect fifth (3:2), sometimes called a just chromatic semitone because of its smaller size, but it is less common. Composer Ben Johnston uses a sharp an accidental to indicate a note is raised 70.6 cents, or or a flat to indicate a note is lowered 70.6 cents.[9]

There are various other ratios which may function as a minor second. In 7-limit there is the septimal diatonic semitone of 15:14 (About this sound play ) available between the 5-limit major seventh (15:8) and the 7-limit minor seventh (7:4). There is also a smaller septimal chromatic semitone of 21:20 (About this sound play ) between a septimal minor seventh and a fifth (21:8) and an octave and a major third (5:2). Both are more rarely used than their 5-limit neighbours, although the former was often implemented by theorist Henry Cowell, while Harry Partch used the latter as part of his 43-tone scale.

Under 11-limit tuning, there is a fairly common undecimal neutral second (12:11) (About this sound play ), but it lies on the boundary between the minor and major second (150.64 cents). In just intonation there are infinitely many possibilities for intervals that fall within the range of the semitone (e.g. the Pythagorean semitones mentioned above), but most of them are impractical.

Though the names diatonic and chromatic are often used for these intervals, their musical function is not the same as the two meantone semitones. For instance, 15:14 would usually be written as an augmented unison, functioning as the chromatic counterpart to a diatonic 16:15. These distinctions are highly dependent on the musical context, and just intonation is not particularly well suited to chromatic usage (diatonic semitone function is more prevalent).

Other equal temperaments

19-tone equal temperament distinguishes between the chromatic and diatonic semitones; in this tuning, the chromatic semitone is one step of the scale (About this sound play 63.16 cents ), and the diatonic semitone is two (About this sound play 126.32 cents ). 31-tone equal temperament also distinguishes between these two intervals, which become 2 and 3 steps of the scale, respectively. 53-ET has an even closer match to the two semitones with 3 and 5 steps of its scale while 72-ET uses 4 (About this sound play 66.67 cents ) and 7 (About this sound play 116.67 cents ) steps of its scale.

In general, because the two semitones can be viewed as the difference between major and minor thirds, and the difference between major thirds and perfect fourths, tuning systems that match these just intervals closely will also distinguish between the two types of semitones and match their just intervals closely.

See also


  1. ^ Semitone, half step, half tone, halftone, and half-tone are all variously used in sources.[1][2][3][4][5][6]
    Aaron Copland, Leonard Bernstein, and others use "half tone".[7] [8][9][10]
    One source says that step is "chiefly US",[11] and that half-tone is "chiefly N. Amer."[12]
  2. ^ Miller, Michael. The Complete Idiot's Guide to Music Theory, 2nd ed. [Indianapolis, IN]: Alpha, 2005. ISBN 1592574378. p. 19.
  3. ^ John Walton Capstick (1913). Sound: An Elementary Text-book for Schools and Colleges. Cambridge University Press.  
  4. ^ a b Sembos (2006). Principles of Music Theory, p.51. ISBN 1430309555. online
  5. ^ a b Blood, Brian (2008 rev 2009). "Intervals". Music Theory Online. Dolmetsch Musical Instruments. Retrieved 25 December 2009.  
  6. ^ Kostka and Payne (2003). Tonal Harmony, p.21. ISBN 0072852607. "There is no such thing as a diminished unison."
  7. ^ Prout, Ebenezer (2004). Harmony, p.325. ISBN 1410219208.
  8. ^ a b Dahlhaus, Carl, trans. Gjerdingen, Robert O. Studies in the Origin of Harmonic Tonality. Princeton University Press: Princeton, 1990. ISBN 0-691-09135-8.
  9. ^ John Fonville. "Ben Johnston's Extended Just Intonation- A Guide for Interpreters", p.109, Perspectives of New Music, Vol. 29, No. 2 (Summer, 1991), pp. 106-137. "...the 25/24 ratio is the sharp (#) ratio...this raises a note approximately 70.6 cents."

Further reading

  • Grout, Donald Jay, and Claude V. Palisca. A History of Western Music, 6th ed. New York: Norton, 2001. ISBN 0-393-97527-4.
  • Hoppin, Richard H. Medieval Music. New York: W.W. Norton, 1978. ISBN 0-393-09090-6.


Up to date as of January 15, 2010
(Redirected to semitone article)

Definition from Wiktionary, a free dictionary






semitone (plural semitones)

  1. (music) The interval between adjacent keys on a keyboard instrument; a half tone in the standard diatonic scale




Got something to say? Make a comment.
Your name
Your email address