The Full Wiki

Seven-segment display: Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.


From Wikipedia, the free encyclopedia

A typical 7-segment LED display component, with decimal point.

A seven-segment display (abbreviation: "7-seg(ment) display"), less commonly known as a seven-segment indicator, is a form of electronic display device for displaying decimal numerals that is an alternative to the more complex dot-matrix displays. Seven-segment displays are widely used in digital clocks, electronic meters, and other electronic devices for displaying numerical information.


Concept and visual structure

The individual segments of a seven-segment display.

A seven segment display, as its name indicates, is composed of seven elements. Individually on or off, they can be combined to produce simplified representations of the arabic numerals. Often the seven segments are arranged in an oblique (slanted) arrangement, which aids readability.

Each of the numbers 0, 6, 7 and 9 may be represented by two or more different glyphs on seven-segment displays.

LED-based 7-segment display showing the 16 hex digits.

The seven segments are arranged as a rectangle of two vertical segments on each side with one horizontal segment on the top, middle, and bottom. Additionally, the seventh segment bisects the rectangle horizontally. There are also fourteen-segment displays and sixteen-segment displays (for full alphanumerics); however, these have mostly been replaced by dot-matrix displays.

The segments of a 7-segment display are referred to by the letters A to G, as shown to the right, where the optional DP decimal point (an "eighth segment") is used for the display of non-integer numbers.

The animation to the left cycles through the common glyphs of the ten decimal numerals and the six hexadecimal "letter digits" (A–F). It is an image sequence of a "LED" display, which is described technology-wise in the following section. Notice the variation between uppercase and lowercase letters for A–F; this is done to obtain a unique, unambiguous shape for each letter.

Seven segments are, effectively, the fewest required to represent each of the ten Hindu-Arabic numerals with a distinct and recognizable glyph. Bloggers have experimented with six-segment and even five-segment displays with such novel shapes as curves, angular blocks and serifs for segments; however, these often require complicated and/or non-uniform shapes and sometimes create unrecognizable glyphs.[1]


An incandescent light type early seven-segment display.
A mechanical seven-segment display for displaying automotive fuel prices.

Seven-segment displays may use liquid crystal display (LCD), arrays of light-emitting diodes (LEDs), and other light-generating or controlling techniques such as cold cathode gas discharge, vacuum fluorescent, incandescent filaments, and others. For gasoline price totems and other large signs, vane displays made up of electromagnetically flipped light-reflecting segments (or "vanes") are still commonly used. An alternative to the 7-segment display in the 1950s through the 1970s was the cold-cathode, neon-lamp-like nixie tube. Starting in 1970, RCA sold a display device known as the Numitron that used incandescent filaments arranged into a seven-segment display. [2]

In a simple LED package, each LED is typically connected with one terminal to its own pin on the outside of the package and the other LED terminal connected in common with all other LEDs in the device and brought out to a shared pin. This shared pin will then make up all of the cathodes (negative terminals) OR all of the anodes (positive terminals) of the LEDs in the device; and so will be either a "Common Cathode" or "Common Anode" device depending how it is constructed. Hence a 7 segment plus DP package will only require nine pins to be present and connected.

Integrated displays also exist, with single or multiple digits. Some of these integrated displays incorporate their own internal decoder, though most do not – each individual LED is brought out to a connecting pin as described. Multiple-digit LED displays as used in pocket calculators and similar devices used multiplexed displays to reduce the number of IC pins required to control the display. For example, all the anodes of the A segments of each digit position would be connected together and to a driver pin, while the cathodes of all segments for each digit would be connected. To operate any particular segment of any digit, the controlling integrated circuit would turn on the cathode driver for the selected digit, and the anode drivers for the desired segments; then after a short blanking interval the next digit would be selected and new segments lit, in a sequential fashion. In this manner an eight digit display with seven segments and a decimal point would require only 8 cathode drivers and 8 anode drivers, instead of sixty-four drivers and IC pins. Often in pocket calculators the digit drive lines would be used to scan the keyboard as well, providing further savings; however, pressing multiple keys at once would produce odd results on the multiplexed display.

Seven segment displays can be found in patents as early as 1908 (in U.S. Patent 974,943, F W Wood invented an 8-segment display, which displayed the number 4 using a diagonal bar), but did not achieve widespread use until the advent of LEDs in the 1970s. They are sometimes even used in unsophisticated displays like cardboard "For sale" signs, where the user either applies color to pre-printed segments, or (spray)paints color through a seven-segment digit template, to compose figures such as product prices or telephone numbers.

For many applications, dot-matrix LCDs have largely superseded LED displays, though even in LCDs 7-segment displays are very common. Unlike LEDs, the shapes of elements in an LCD panel are arbitrary since they are formed on the display by a kind of printing process. In contrast, the shapes of LED segments tend to be simple rectangles, reflecting the fact that they have to be physically moulded to shape, which makes it difficult to form more complex shapes than the segments of 7-segment displays. However, the high common recognition factor of 7-segment displays, and the comparatively high visual contrast obtained by such displays relative to dot-matrix digits, makes seven-segment multiple-digit LCD screens very common on basic calculators.

Alphabetic display

In addition to the ten numerals, seven segment displays can be used to show letters of the latin, cyrillic and greek alphabets including punctuation, but only few representations are unambiguous and intuitive at the same time: uppercase A, B, C, E, F, G, H, I, J, L, O, P, S, U, Y, Z, and lowercase a, b, c, d, g, h, i, n, o, q, r, t, u. Thus, ad hoc and corporate solutions dominate the field of alphabetics on seven-segment displays, which is usually not considered essential and only used for basic notifications, such as internal test messages on equipment under development.

Similar displays with fourteen or sixteen segments are available allowing decent representations of the alphabet.

Using a restricted range of letters that look like (upside-down) digits, seven-segment displays are commonly used by school children to form words and phrases using a technique known as "calculator spelling".

Numbers to 7-segment-code

A single byte can encode the full state of a 7-segment-display. The most popular bit encodings are gfedcba and abcdefg - both usually assume 0 is off and 1 is on.

This table gives the hexadecimal encodings for displaying the digits 0 to 9:

Digit gfedcba abcdefg a b c d e f g
0 0x3F 0xFE on on on on on on off
1 0x06 0x30 off on on off off off off
2 0x5B 0x6D on on off on on off on
3 0x4F 0x79 on on on on off off on
4 0x66 0x33 off on on off off on on
5 0x6D 0x5B on off on on off on on
6 0x7D 0x5F on off on on on on on
7 0x07 0x70 on on on off off off off
8 0x7F 0x7F on on on on on on on
9 0x6F 0x7B on on on on off on on


  1. ^ Entry dated January 21, 2008. The House of Cy Reb, Jr.
  2. ^ Numitron Readout

See also



Got something to say? Make a comment.
Your name
Your email address