In game theory, the stag hunt is a game which describes a conflict between safety and social cooperation. Other names for it or its variants include "assurance game", "coordination game", and "trust dilemma". JeanJacques Rousseau described a situation in which two individuals go out on a hunt. Each can individually choose to hunt a stag or hunt a hare. Each player must choose an action without knowing the choice of the other. If an individual hunts a stag, he must have the cooperation of his partner in order to succeed. An individual can get a hare by himself, but a hare is worth less than a stag. This is taken to be an important analogy for social cooperation.
The stag hunt differs from the Prisoner's Dilemma in that there are two Nash equilibria: when both players cooperate and both players defect. In the Prisoners Dilemma, however, despite the fact that both players cooperating is Pareto efficient, the only Nash equilibrium is when both players choose to defect.
An example of the payoff matrix for the stag hunt is pictured in Figure 2.


Contents 
Formally, a stag hunt is a game with two pure strategy Nash equilibria  one that is risk dominant another that is payoff dominant. The payoff matrix in Figure 1 illustrates a stag hunt, where . Often, games with a similar structure but without a risk dominant Nash equilibrium are called stag hunts. For instance if a=2, b=1, c=0, and d=1. While (Hare, Hare) remains a Nash equilibrium, it is no longer risk dominant. Nonetheless many would call this game a stag hunt.
In addition to the pure strategy Nash equilibria there is one mixed strategy Nash equilibrium. This
equilibrium depends on the payoffs, but the risk dominance
condition places a bound on the mixed strategy Nash equilibrium. No
payoffs (that satisfy the above conditions including risk
dominance) can generate a mixed strategy equilibrium where Stag is
played with a probability higher than one half. The best response
correspondences are pictured here.
Although most authors focus on the prisoner's dilemma as the game that best represents the problem of social cooperation, some authors believe that the stag hunt represents an equally (or more) interesting context in which to study cooperation and its problems (for an overview see Skyrms 2004).
There is a substantial relationship between the stag hunt and the prisoner's dilemma. In biology many circumstances that have been described as prisoner's dilemma might also be interpreted as a stag hunt, depending on how fitness is calculated. It is also the case that some human interactions that seem like prisoner's dilemmas may in fact be stag hunts. For example, suppose we have a prisoner's dilemma as pictured in Figure 3.
But occasionally players who defect against cooperators are punished for their defection. For instance, if the expected punishment is 2, then the imposition of this punishment turns the above prisoner's dilemma into the stag hunt given at the introduction.
Cooperate  Defect  
Cooperate  4, 4  0, 5 
Defect  5, 0  3, 3 
Fig. 3: Prisoner's dilemma example 
In addition to the example suggested by Rousseau, David Hume provides a series of examples that are stag hunts. One example addresses two individuals who must row a boat. If both choose to row they can successfully move the boat. However if one doesn't, the other wastes his effort. Hume's second example involves two neighbors wishing to drain a meadow. If they both work to drain it they will be successful, but if either fails to do his part the meadow will not be drained.
Several animal behaviors have been described as stag hunts. One is the coordination of slime molds. In times of stress, individual unicellular protists will aggregate to form one large body. Here if they all act together they can successfully reproduce, but success depends on the cooperation of many individual protozoa. Another example is the hunting practices of orcas (known as carousel feeding). Orcas cooperatively corral large schools of fish to the surface and stun them by hitting them with their tails. Since this requires that the fish have no way to escape, it requires the cooperation of many orcas.

