The Full Wiki

Structural engineering: Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.


From Wikipedia, the free encyclopedia

Burj Khalifa, in Dubai, the world's tallest building, shown under construction in 2007 (since completed)

Structural engineering is a field of engineering dealing with the analysis and design of structures that support or resist loads. Structural engineering is usually considered a specialty within civil engineering, but it can also be studied in its own right.[1] Structural engineers are most commonly involved in the design of buildings and large nonbuilding structures[2] but they can also be involved in the design of machinery, medical equipment, vehicles or any item where structural integrity affects the item's function or safety. Structural engineers must ensure their designs satisfy given design criteria, predicated on safety (e.g. structures must not collapse without due warning) or serviceability and performance (e.g. building sway must not cause discomfort to the occupants).

Structural engineering theory is based upon physical laws and empirical knowledge of the structural performance of different landscapes and materials. Structural engineering design utilises a relatively small number of basic structural elements to build up structural systems that can be very complex. Structural engineers are responsible for making creative and efficient use of funds, structural elements and materials to achieve these goals.[2]

Structural engineer

Structural engineers are responsible for engineering design and analysis. Entry-level structural engineers may design the individual structural elements of a structure, for example the beams, columns, and floors of a building. More experienced engineers would be responsible for the structural design and integrity of an entire system, such as a building.

Structural engineers often specialize in particular fields, such as bridge engineering, building engineering, pipeline engineering, industrial structures, or special mechanical structures such as vehicles or aircraft.

Structural engineering has existed since humans first started to construct their own structures. It became a more defined and formalised profession with the emergence of the architecture profession as distinct from the engineering profession during the industrial revolution in the late 19th Century. Until then, the architect and the structural engineer were often one and the same - the master builder. Only with the understanding of structural theories that emerged during the 19th and 20th century did the professional structural engineer come into existence.

The role of a structural engineer today involves a significant understanding of both static and dynamic loading, and the structures that are available to resist them. The complexity of modern structures often requires a great deal of creativity from the engineer in order to ensure the structures support and resist the loads they are subjected to. A structural engineer will typically have a four or five year undergraduate degree, followed by a minimum of three years of professional practice before being considered fully qualified.[3]

Structural engineers are licensed or accredited by different learned societies and regulatory bodies around the world (for example, the Institution of Structural Engineers in the UK)[3]. Depending on the degree course they have studied and/or the jurisdiction they are seeking licensure in, they may be accredited (or licensed) as just structural engineers, or as civil engineers, or as both civil and structural engineers.

History of structural engineering

Structural engineering dates back to at least 2700 BC when the step pyramid for Pharaoh Djoser was built by Imhotep, the first engineer in history known by name. Pyramids were the most common major structures built by ancient civilizations because the structural form of a pyramid is inherently stable and can be almost infinitely scaled (as opposed to most other structural forms, which cannot be linearly increased in size in proportion to increased loads).[4]

Throughout ancient and medieval history most architectural design and construction was carried out by artisans, such as stone masons and carpenters, rising to the role of master builder. No theory of structures existed, and understanding of how structures stood up was extremely limited, and based almost entirely on empirical evidence of 'what had worked before'. Knowledge was retained by guilds and seldom supplanted by advances. Structures were repetitive, and increases in scale were incremental.[4]

No record exists of the first calculations of the strength of structural members or the behaviour of structural material, but the profession of structural engineer only really took shape with the industrial revolution and the re-invention of concrete (see History of concrete). The physical sciences underlying structural engineering began to be understood in the Renaissance and have been developing ever since.

Structural failure

The history of structural engineering contains many collapses and failures. Sometimes this is due to obvious negligence, as in the case of the Pétionville school collapse, in which Rev. Fortin Augustin said that "he constructed the building all by himself, saying he didn't need an engineer as he had good knowledge of construction" following a partial collapse of the three-story schoolhouse that sent neighbors fleeing.[5] The final collapse killed at least 94 people, mostly children.

In other cases structural failures require careful study, and the results of these inquiries have resulted in improved practices and greater understanding of the science of structural engineering. Some such studies are the result of Forensic engineering investigations where the original engineer seems to have done everything in accordance with the state of the profession and acceptable practice yet a failure still eventuated. A famous case of structural knowledge and practice being advanced in this manner can be found in a series of failures involving Box girders which collapsed in Australia during the 1970s.


Building structures

Sydney Opera House, designed by Ove Arup & Partners, with the architect Jorn Utzon

Structural building engineering includes all structural engineering related to the design of buildings. It is the branch of structural engineering that is close to architecture.

Structural building engineering is primarily driven by the creative manipulation of materials and forms and the underlying mathematical and scientific ideas to achieve an end which fulfills its functional requirements and is structurally safe when subjected to all the loads it could reasonably be expected to experience. This is subtly different from architectural design, which is driven by the creative manipulation of materials and forms, mass, space, volume, texture and light to achieve an end which is aesthetic, functional and often artistic.

The architect is usually the lead designer on buildings, with a structural engineer employed as a sub-consultant. The degree to which each discipline actually leads the design depends heavily on the type of structure. Many structures are structurally simple and led by architecture, such as multi-storey office buildings and housing, while other structures, such as tensile structures, shells and gridshells are heavily dependent on their form for their strength, and the engineer may have a more significant influence on the form, and hence much of the aesthetic, than the architect.

The structural design for a building must ensure that the building is able to stand up safely, able to function without excessive deflections or movements which may cause fatigue of structural elements, cracking or failure of fixtures, fittings or partitions, or discomfort for occupants. It must account for movements and forces due to temperature, creep, cracking and imposed loads. It must also ensure that the design is practically buildable within acceptable manufacturing tolerances of the materials. It must allow the architecture to work, and the building services to fit within the building and function (air conditioning, ventilation, smoke extract, electrics, lighting etc). The structural design of a modern building can be extremely complex, and often requires a large team to complete.

Structural engineering specialties for buildings include:

Earthquake engineering structures

Earthquake engineering structures are those engineered to withstand various types of hazardous earthquake exposures at the sites of their particular location.

Earthquake-proof and massive pyramid El Castillo, Chichen Itza

Earthquake engineering is treating its subject structures like defensive fortifications in military engineering but for the warfare on earthquakes. Both earthquake and military general design principles are similar: be ready to slow down or mitigate the advance of a possible attacker.

The main objectives of earthquake engineering are:

Snapshot from shake-table video [1] of testing base-isolated (right) and regular (left) building model
  • Understand interaction of structures with the shaky ground.
  • Design and construct the structures to [[seismic performance|perform while being exposed to an earthquake.

Earthquake engineering or earthquake-proof structure does not, necessarily, means extremely strong and expensive one like El Castillo pyramid at Chichen Itza shown above.

Now, the most powerful and budgetary tool of the earthquake engineering is base isolation which pertains to the passive structural vibration control technologies.

Civil engineering structures

Civil structural engineering includes all structural engineering related to the built environment. It includes:

The structural engineer is the lead designer on these structures, and often the sole designer. In the design of structures such as these, structural safety is of paramount importance (in the UK, designs for dams, nuclear power stations and bridges must be signed off by a chartered engineer).

Civil engineering structures are often subjected to very extreme forces, such as large variations in temperature, dynamic loads such as waves or traffic, or high pressures from water or compressed gases. They are also often constructed in corrosive environments, such as at sea, in industrial facilities or below ground.

Mechanical structures

An Airbus A380, the world's largest passenger airliner

Principals of structural engineering are applied to variety of mechanical (moveable) structures. The design of static structures assumes they always have the same geometry (in fact, so-called static structures can move significantly, and structural engineering design must take this into account where necessary), but the design of moveable or moving structures must account for fatigue, variation in the method in which load is resisted and significant deflections of structures.

The forces which parts of a machine are subjected to can vary significantly, and can do so at a great rate. The forces which a boat or aircraft are subjected to vary enormously and will do so thousands of times over the structure's lifetime. The structural design must ensure that such structures are able to endure such loading for their entire design life without failing.

These works can require mechanical structural engineering:

Structural elements

A statically determinate simply supported beam, bending under an evenly distributed load.

Any structure is essentially made up of only a small number of different types of elements:

Many of these elements can be classified according to form (straight, plane / curve) and dimensionality (one-dimensional / two-dimensional):

One-dimensional Two-dimensional
straight curve plane curve
(predominantly) bending beam continuous arch plate, concrete slab lamina, dome
(predominant) tensile stress rope Catenary shell
(predominant) compression pier, column Load-bearing wall


Columns are elements that carry only axial force - either tension or compression - or both axial force and bending (which is technically called a beam-column but practically, just a column). The design of a column must check the axial capacity of the element, and the buckling capacity.

The buckling capacity is the capacity of the element to withstand the propensity to buckle. Its capacity depends upon its geometry, material, and the effective length of the column, which depends upon the restraint conditions at the top and bottom of the column. The effective length is K * l where l is the real length of the column.

The capacity of a column to carry axial load depends on the degree of bending it is subjected to, and vice versa. This is represented on an interaction chart and is a complex non-linear relationship.


A beam may be defined as an element in which one dimemsion is much greater than the other two and the applied loads are usually normal to the main axis of the element. Beams and columns are called line elements and are often represented by simple lines in structural modeling.

  • cantilevered (supported at one end only with a fixed connection)
  • simply supported (supported vertically at each end; horizontally on only one to withstand friction, and able to rotate at the supports)
  • continuous (supported by three or more supports)
  • a combination of the above (ex. supported at one end and in the middle)

Beams are elements which carry pure bending only. Bending causes one part of the section of a beam (divided along its length) to go into compression and the other part into tension. The compression part must be designed to resist buckling and crushing, while the tension part must be able to adequately resist the tension.

Struts and ties

The McDonnell Planetarium by Gyo Obata in St Louis, Missouri, USA, a concrete shell structure
A masonry arch
1. Keystone 2. Voussoir 3. Extrados 4. Impost 5. Intrados 6. Rise 7. Clear span 8. Abutment

A truss is a structure comprising two types of structural elements; compression members and tension members (i.e. struts and ties). Most trusses use gusset plates to connect intersecting elements. Gusset plates are relatively flexible and minimize bending moments at the connections, thus allowing the truss members to carry primarily tension or compression.

Trusses are usually utilised in span large distances, where it would be uneconomical to use solid beams.


Plates carry bending in two directions. A concrete flat slab is an example of a plate. Plates are understood by using continuum mechanics, but due to the complexity involved they are most often designed using a codified empirical approach, or computer analysis.

They can also be designed with yield line theory, where an assumed collapse mechanism is analysed to give an upper bound on the collapse load (see Plasticity). This is rarely used in practice.


Shells derive their strength from their form, and carry forces in compression in two directions. A dome is an example of a shell. They can be designed by making a hanging-chain model, which will act as a catenary in pure tension, and inverting the form to achieve pure compression.


Arches carry forces in compression in one direction only, which is why it is appropriate to build arches out of masonry. They are designed by ensuring that the line of thrust of the force remains within the depth of the arch.


Catenaries derive their strength from their form, and carry transverse forces in pure tension by deflecting (just as a tightrope will sag when someone walks on it). They are almost always cable or fabric structures. A fabric structure acts as a catenary in two directions.

Structural engineering theory

Figure of a bolt in shear. Top figure illustrates single shear, bottom figure illustrates double shear.

Structural engineering depends upon a detailed knowledge of loads, physics and materials to understand and predict how structures support and resist self-weight and imposed loads. To apply the knowledge successfully a structural engineer will need a detailed knowledge of mathematics and of relevant empirical and theoretical design codes. He will also need to know about the corrosion resistance of the materials and structures, especially when those structures are exposed to the external environment.


The 630 foot (192 m) high, stainless-clad (type 304) Gateway Arch in Saint Louis, Missouri

Structural engineering depends on the knowledge of materials and their properties, in order to understand how different materials support and resist loads.

Common structural materials are:

See also


  • Blank, Alan; McEvoy, Michael; Plank, Roger (1993). Architecture and Construction in Steel. Taylor & Francis. ISBN 0419176608.
  • Bradley, Robert E.; Sandifer, Charles Edward (2007). Leonhard Euler: Life, Work and Legacy. Elsevier. ISBN 0444527281.
  • Chapman, Allan. (2005). England's Leornardo: Robert Hooke and the Seventeenth Century's Scientific Revolution. CRC Press. ISBN 0750309873.
  • Dugas, René (1988). A History of Mechanics. Courier Dover Publications. ISBN 0486656322.
  • Feld, Jacob; Carper, Kenneth L. (1997). Construction Failure. John Wiley & Sons. ISBN 0471574775.
  • Galilei, Galileo. (translators: Crew, Henry; de Salvio, Alfonso) (1954). Dialogues Concerning Two New Sciences. Courier Dover Publications. ISBN 0486600998
  • Hewson, Nigel R. (2003). Prestressed Concrete Bridges: Design and Construction. Thomas Telford. ISBN 0727727745.
  • Heyman, Jacques (1998). Structural Analysis: A Historical Approach. Cambridge University Press. ISBN 0521622492.
  • Heyman, Jacques (1999). The Science of Structural Engineering. Imperial College Press. ISBN 1860941893.
  • Hosford, William F. (2005). Mechanical Behavior of Materials. Cambridge University Press. ISBN 0521846706.
  • Hoogenboom, P.C.J. . Historical Overview of Concrete Modelling.
  • Kirby, Richard Shelton (1990). Engineering in History. Courier Dover Publications. ISBN 0486264122.
  • Labrum, E.A. (1994). Civil Engineering Heritage. Thomas Telford. ISBN 072771970X.
  • Lewis, Peter R. (2004). Beautiful Bridge of the Silvery Tay. Tempus.
  • Mir, Ali (2001). Art of the Skyscraper: the Genius of Fazlur Khan. Rizzoli International Publications. ISBN 0847823709.
  • Nedwell, P.J.; Swamy, R.N.(ed) (1994). Ferrocement:Proceedings of the Fifth International Symposium. Taylor & Francis. ISBN 0419197001.
  • Rozhanskaya, Mariam; Levinova, I. S. (1996). "Statics" in Morelon, Régis & Rashed, Roshdi (1996). Encyclopedia of the History of Arabic Science, vol. 2-3, Routledge. ISBN 0415020638
  • Whitbeck, Caroline (1998). Ethics in Engineering Practice and Research. Cambridge University Press. ISBN 0521479444.

External links

Study guide

Up to date as of January 14, 2010

From Wikiversity


Structural engineering is a field of engineering that deals with the design of any structural system(s), the purpose of which is to support and resist various loads.

Most commonly, structural engineers are involved in the design of buildings and nonbuilding structures, but also play an essential role in designing machinery where structural integrity of the design item is a matter of safety and reliability. Large man-made objects—everything from furniture to medical equipment and from vehicles (trucks, aircraft, spacecraft and watercraft) to cranes—require the input of a structural engineer.

Traditionally, structural engineering is viewed as part of civil engineering, however, its scope is already expanded beyond the edge of civil engineering. In a practical sense, structural engineering is largely the application of Newtonian mechanics to the design of structural elements and systems that support buildings, bridges, walls (including retaining walls), dams, tunnels, etc.

Structural engineers ensure that their designs satisfy a given design intent predicated on safety (i.e. structures do not collapse without due warning) and on serviceability (i.e. floor vibration and building sway do not result in occupants criteria discomfort). In addition, structural engineers are responsible for making efficient use of funds and materials to achieve these goals. Typically, entry-level structural engineers may design simple beams, columns, and floors of a new building, including calculating the loads on each member and the load capacity of various building materials (steel, timber, masonry, concrete). An experienced engineer would tend to render more difficult structures, considering physics of moisture, heat and energy inside the building components.

In the United States, the structural engineering field is often subdivided into bridge engineering and structural engineering for buildings. Additionally, structural engineers often further specialize into special structure manufacture or construction, such as pipeline engineering or industrial structures.

Structural loads on structures are generally classified as: live loads such as the weight of occupants and furniture in a building, the forces of wind or weights of water, the forces due to seismic activity such as an earthquake, dead loads including the weight of the structure itself and all major architectural components and live roof loads such as material and manpower loading the structure during construction. Structural engineers mainly fight against the forces of nature like winds, earthquakes and tsunamis. In recent years, however, reinforcing structures against sabotage has taken on increased importance.


The education of structural engineers is usually through a civil or architectural engineering degree with structural emphasis or through a structural engineering degree. The fundamental core subjects for structural engineering are strength of materials or solid mechanics, statics, dynamics, material science, numerical analysis and conceptual structural design. Reinforced concrete, composite structure, timber, masonry and structural steel designs are the general structural design courses that will be introduce in the next level of the education of structural engineering. The structural analysis courses which include structural mechanics, structural dynamics and structural failure analyses are designed to build up the fundamental analysis skills and theories for structural engineering students. At the senior year level or higher, prestressed concrete design, space frame design for building and aircraft, bridge engineering, civil and aerospace structure rehabilitation and other advanced structural engineering specializations are usually introduced.

Recently in the United States, there have been discussions in the structural engineering community about the competency of structural engineering graduates. Some have called for a master's degree to be the minimum standard for professional licensing. There is also growing support to establish a structural engineering undergraduate degree; some existed in the past, and one still exists at the University of California-San Diego. Many students who later become structural engineers major in civil, mechanical, or aerospace engineering degree programs, which typically do not emphasize structural engineering. Architectural engineering programs do offer structural emphases, and are often in combined academic departments with civil engineering.


In the United States, structural engineers are licensed at the State level. In many States a Structural Engineering license is conferred after several years experience, and the passage of multiple exams. In some states, including California, a Civil Engineering (CE or PE for Professional Engineer) license is usually the first step, which in itself requires at least two years, and in most states four, practical experience and the passage of an exam. After that milestone, two to three more years of specialized structural experience is necessary, then the passage of a multiple day exam focusing solely on structures. In New York State, a Fundamentals of Engineering exam is taken first, with no experience required. After a minimum four years of experience (including up to 1 year of graduate education) the Professional Engineer's (PE) licensing exam is taken. This exam is geared specifically for structural engineers, however the license is valid for all engineering disciplines.

See also

Simple English

Structural engineering is a subset of civil engineering dealing with the design and analysis of buildings and large non-building structures to withstand both the gravity and wind loads as well as natural disasters. Besides, it may also cover design of machinery, medical equipment, vehicles or any other objects where structural functionality or safety are involved. Structural engineers must ensure their designs satisfy building codes.

Major structural engineering projects go through the following four stages: research, design, testing, and construction which are featured with the images below:

Structural engineering came to existence when the humans first started to construct their own structures. It became a more defined profession with the emergence of the architecture profession during the industrial revolution in the late 19th Century [1].

Entry-level structural engineers may design individual structural elements of a structure, for example, beams, columns, and floors of a building. More experienced engineers would be responsible for the structural design and integrity of an entire system, such as a building.

Structural engineers often specialize in particular fields, such as bridge engineering, building engineering, pipeline engineering, industrial structures, or special mechanical structures such as vehicles or aircrafts.


Other pages

Error creating thumbnail: sh: convert: command not found
Wikimedia Commons has images, video, and/or sound related to:

Got something to say? Make a comment.
Your name
Your email address