In statistics, study heterogeneity is a problem that can arise when attempting to undertake a metaanalysis. Ideally, the studies whose results are being combined in the metaanalysis should all be undertaken in the same way and to the same experimental protocols: study heterogeneity is a term used to indicate that this ideal is not fully met.
Metaanalysis is a method used to combine the results of different trials in order to obtain a quantified synthesis. The size of individual clinical trials is often too small to detect treatment effects reliably. Metaanalysis increases the power of statistical analyses by pooling the results of all available trials.
As one tries to use the metaanalysis to estimate a combined effect from a group of similar studies, there needs to be a check that the effects found in the individual studies are similar enough that one can be confident that a combined estimate will be a meaningful description of the set of studies. However, the individual estimates of treatment effect will vary by chance, because of randomization. Thus some variation is expected. The question is whether there is more variation than would be expected by chance alone. When this excessive variation occurs, it is called statistical heterogeneity, or just heterogeneity.
When there is heterogeneity that cannot readily be explained, one analytical approach is to incorporate it into a random effects model. A random effects metaanalysis model involves an assumption that the effects being estimated in the different studies are not identical, but follow some distribution. The model represents the lack of knowledge about why real, or apparent, treatment effects differ by treating the differences as if they were random. The centre of this symmetric distribution describes the average of the effects, while its width describes the degree of heterogeneity. The conventional choice of distribution is a normal distribution. It is difficult to establish the validity of any distributional assumption, and this is a common criticism of random effects metaanalyses. The importance of the particular assumed shape for this distribution is not known.
