The superposition theorem for electrical circuits states that the response (Voltage or Current) in any branch of a bilateral linear circuit having more than one independent source equals the algebraic sum of the responses caused by each independent source acting alone, while all other independent sources are replaced by their internal impedances.
To ascertain the contribution of each individual source, all of the other sources first must be "turned off" (set to zero) by:
This procedure is followed for each source in turn, then the resultant responses are added to determine the true operation of the circuit. The resultant circuit operation is the superposition of the various voltage and current sources.
The superposition theorem is very important in circuit analysis. It is used in converting any circuit into its Norton equivalent or Thevenin equivalent.
Applicable to linear networks (time varying or time invariant) consisting of independent sources, linear dependent sources, linear passive elements Resistors, Inductors, Capacitors and linear transformers.
