The Full Wiki

More info on Superposition theorem

Superposition theorem: Wikis

Advertisements
  

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Encyclopedia

From Wikipedia, the free encyclopedia

The superposition theorem for electrical circuits states that the response (Voltage or Current) in any branch of a bilateral linear circuit having more than one independent source equals the algebraic sum of the responses caused by each independent source acting alone, while all other independent sources are replaced by their internal impedances.

To ascertain the contribution of each individual source, all of the other sources first must be "turned off" (set to zero) by:

  1. Replacing all other independent voltage sources with a short circuit (thereby eliminating difference of potential. i.e. V=0, internal impedance of ideal voltage source is ZERO (short circuit)).
  2. Replacing all other independent current sources with an open circuit (thereby eliminating current. i.e. I=0, internal impedance of ideal current source is infinite (open circuit).

This procedure is followed for each source in turn, then the resultant responses are added to determine the true operation of the circuit. The resultant circuit operation is the superposition of the various voltage and current sources.

The superposition theorem is very important in circuit analysis. It is used in converting any circuit into its Norton equivalent or Thevenin equivalent.

Applicable to linear networks (time varying or time invariant) consisting of independent sources, linear dependent sources, linear passive elements Resistors, Inductors, Capacitors and linear transformers.

External links

References

  • Electronic Devices and Circuit Theory 9th ed. by Boylestad and Nashelsky

Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message