The Full Wiki

Surface area: Wikis

Advertisements
  

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Encyclopedia

From Wikipedia, the free encyclopedia

Surface area is the measure of how much exposed area a solid object has, expressed in square units. Mathematical description of the surface area is considerably more involved than the definition of arc length of a curve. For polyhedra (objects with flat polygonal faces) the surface area is the sum of the areas of its faces. Smooth surfaces, such as a sphere, are assigned surface area using their representation as parametric surfaces. This definition of the surface area is based on methods of infinitesimal calculus and involves partial derivatives and double integration.

General definition of surface area was sought by Henri Lebesgue and Hermann Minkowski at the turn of the twentieth century. Their work led to the development of geometric measure theory which studies various notions of surface area for irregular objects of any dimension. An important example is the Minkowski content of a surface.

Contents

Definition of surface area

While areas of many simple surfaces have been known since antiquity, a rigorous mathematical definition of area requires a lot of care. Surface area is an assignment

 S \mapsto A(S)

of a positive real number to a certain class of surfaces that satisfies several natural requirements. The most fundamental property of the surface area is its additivity: the area of the whole is the sum of the areas of the parts. More rigorously, if a surface S is a union of finitely many pieces S1, …, Sr which do not overlap except at their boundaries then

 A(S) = A(S_1) + \cdots + A(S_r).

Surface areas of flat polygonal shapes must agree with their geometrically defined area. Since surface area is a geometric notion, areas of congruent surfaces must be the same and area must depend only on the shape of the surface, but not on its position and orientation in space. This means that surface area is invariant under the group of Euclidean motions. These properties uniquely characterize surface area for a wide class of geometric surfaces called piecewise smooth. Such surfaces consist of finitely many pieces that can be represented in the parametric form

 S_D: \vec{r}=\vec{r}(u,v), \quad (u,v)\in D

with continuously differentiable function \vec{r}. The area of an individual piece is defined by the formula

 A(S_D) = \iint_D\left |\vec{r}_u\times\vec{r}_v\right | \, du \, dv.

Thus the area of SD is obtained by integrating the length of the normal vector \vec{r}_u\times\vec{r}_v to the surface over the appropriate region D in the parametric uv plane. The area of the whole surface is then obtained by adding together the areas of the pieces, using additivity of surface area. The main formula can be specialized to different classes of surfaces, giving, in particular, formulas for areas of graphs z = f(x,y) and surfaces of revolution.

One of the subtleties of surface area, as compared to arc length of curves, is that surface area cannot be defined simply as the limit of areas of polyhedral shapes approximating a given smooth surface. It was demonstrated by Hermann Schwarz that already for the cylinder, different choices of approximating flat surfaces can lead to different limiting values of the area.

Various approaches to general definition of surface area were developed in the late nineteenth and the early twentieth century by Henri Lebesgue and Hermann Minkowski. While for piecewise smooth surfaces there is a unique natural notion of surface area, if a surface is very irregular, or rough, then it may not be possible to assign any area at all to it. A typical example is given by a surface with spikes spread throughout in a dense fashion. Many surfaces of this type occur in the theory of fractals. Extensions of the notion of area which partially fulfill its function and may be defined even for very badly irregular surfaces are studied in the geometric measure theory. A specific example of such an extension is the Minkowski content of a surface.

Common formulas

Surface areas of common solids
Shape Equation Variables
Cube  6s^2 \, s = side length
Rectangular prism  2(\ell w + \ell h + wh) \, = length, w = width, h = height
Sphere  4\pi r^2 \, r = radius of sphere
Spherical lune  2r^2\theta \, r = radius of sphere, θ = dihedral angle
Closed cylinder  2\pi r(h+r) \, r = radius of the circular base, h = height of the cylinder
Lateral surface area of a cone  \pi r \left(\sqrt{r^2+h^2}\right) = \pi rs \,  s = \sqrt{r^2+h^2}

s = slant height of the cone,
r = radius of the circular base,
h = height of the cone

Full surface area of a cone  \pi r \left(r + \sqrt{r^2+h^2}\right) = \pi r(r + s) \, s = slant height of the cone,

r = radius of the circular base,
h = height of the cone

Pyramid B + \frac{PL}{2} B = area of base, P = perimeter of base, L = slant height

In chemistry

Surface area is important in chemical kinetics. Increasing the surface area of a substance generally increases the rate of a chemical reaction. For example, iron in a fine powder will combust, while in solid blocks it is stable enough to use in structures. For different applications a minimal or maximal surface area may be desired.

In biology

The inner membrane of the mitochondrion has a large surface area due to infoldings, allowing higher rates of cellular respiration (electron micrograph).

The surface area of an organism is important in several considerations, such as regulation of body temperature and digestion. Animals use their teeth to grind food down into smaller particles, increasing the surface area available for digestion. The epithelial tissue lining the digestive tract contains microvilli, greatly increasing the area available for absorption. Elephants have large ears, allowing them to regulate their own body temperature. In other instances, animals will need to minimize surface area; for example, people will fold their arms over their chest when cold to minimize heat loss.

The surface area to volume ratio (SA:V) of a cell imposes upper limits on size, as the volume increases much faster than does the surface area, thus limiting the rate at which substances diffuse from the interior across the cell membrane to interstitial spaces or to other cells. Indeed, representing a cell as an idealized sphere of radius r, the volume and surface area are, respectively, V = 4/3 π r3; SA = 4 π r2. The resulting surface area to volume ration is therefore 3/r. Thus, if a cell has a radius of 1 μm, the SA:V ratio is 3; whereas if the radius of the cell is instead 10 μm, then the SA:V ratio becomes 0.3. With a cell radius of 100, SA:V ratio is 0.03. Thus, the surface area falls off steeply with increasing volume.

References

Advertisements

Simple English

Surface area is the amount of space covering the outside of a three-dimensional (3D) object. The surface area of a polyhedron is found by finding the sum of the area of all of the faces. The surface area is found between many three-dimensional shapes using formulas.

The surface area is useful because it tells you how much material is required in order to cover the object -- for example, how much paint is needed to paint a table.Surface area is the sum of the faces, or surfaces, of a three dimensional shape.


Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message