The Full Wiki

Swallowing: Wikis

  
  

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Encyclopedia

From Wikipedia, the free encyclopedia

Contents

The purpose of swallowing (deglutition) is to transfer food from the mouth to the stomach. The stages of swallowing can be divided into three phases, oral, pharyngeal and esophageal, with the oral phase under voluntary neuromuscular control and the latter two phases under involuntary neuromuscular control.

In humans

Oral phase

1) Moistening

Food is moistened by saliva from the salivary glands (parasympathetic).

2) Mastication

Food is mechanically broken down by the action of the teeth controlled by the muscles of mastication (Vc) acting on the temporomandibular joint. This results in a bolus which is moved from one side of the oral cavity to the other by the tongue. Buccinator (VII) helps to contain the food against the occlusal surfaces of the teeth. The bolus is ready for swallowing when it is held together by (largely mucus) saliva (VII—chorda tympani and IX—lesser petrosal), sensed by the lingual nerve of the tongue (Vc). Any food that is too dry to form a bolus will not be swallowed.

3) Trough formation

A trough is then formed at the back of the tongue by the intrinsic muscles (XII). The trough obliterates against the hard palate from front to back, forcing the bolus to the back of the tongue. The intrinsic muscles of the tongue (XII) contract to make a trough (a longitudinal concave fold) at the back of the tongue. The tongue is then elevated to the roof of the mouth (by the mylohyoid (mylohyoid nerve—Vc), genioglossus, styloglossus and hyoglossus (the rest XII)) such that the tongue slopes downwards posteriorly. The contraction of the genioglossus and styloglossus (both XII) also contributes to the formation of the central trough.

4) Movement of the bolus posteriorly

The food bolus is moved (by the muscles in the back of the tongue) along the palate and into the. Mylohyoid (Vc) lifts the tongue and styloglossus (XII) pulls it back. The palatoglossal arches are opened by relaxation of palatoglossus (pharyngeal plexus—IX, X). Once the bolus reaches the palatoglossal arch and the oropharynx, the pharyngeal phase, which is reflex and involuntary, then begins. Receptors initiating this reflex are proprioceptive (afferent limb of reflex is IX and efferent limb is the pharyngeal plexus- IX and X). They are scattered over the base of the tongue, the palatoglossal and palatopharyngeal arches, the tonsillar fossa, uvula and posterior pharyngeal wall. Stimuli from the receptors of this phase then provoke the pharyngeal phase. In fact, it has been shown that the swallowing reflex can be initiated entirely by peripheral stimulation of the internal branch of the superior laryngeal nerve.

Pharyngeal phase

For the pharyngeal phase to work properly all other egress from the pharynx must be occluded—this includes the nasopharynx and the larynx. When the pharyngeal phase begins, other activities such as chewing, breathing, coughing and vomiting are concomitantly inhibited.

5) Closure of the nasopharynx

The soft palate is tensed by tensor palati (Vc), and then elevated by levator palati (pharyngeal plexus—IX, X) to close to nasopharynx. There is also the simultaneous approximation of the walls of the pharynx to the posterior free border of the soft palate, which is carried out by the palatopharyngeus (pharyngeal plexus—IX, X) and the upper part of the superior constrictor (pharyngeal plexus—IX, X).

6) The pharynx prepares to receive the bolus

The pharynx is pulled upwards and forwards by the suprahyoid and longitudinal pharyngeal muscles – stylopharyngeus (IX), salpingopharyngeus (pharyngeal plexus—IX, X) and palatopharyngeus (pharyngeal plexus—IX, X) to receive the bolus.

7) Opening of the auditory tube

The actions of the levator palati (pharyngeal plexus—IX, X), tensor palati (Vc) and salpingopharyngeus (pharyngeal plexus—IX, X) in the closure of the nasopharynx and elevation of the pharynx opens the auditory tube, which equalises the pressure between the nasopharynx and the middle ear. This does not contribute to swallowing, but happens as a consequence of it.

8) Closure of the oropharynx

The oropharynx is kept closed by palatoglossus (pharyngeal plexus—IX, X), the intrinsic muscles of tongue (XII) and styloglossus (XII).

9) Laryngeal closure

It is true vocal fold closure that is the primary laryngopharyngeal protective mechanism to prevent aspiration during swallowing. The adduction of the vocal cords are effected by the contraction of the lateral cricoarytenoids and the oblique and transverse arytenoids (all recurrent laryngeal nerve of vagus). Since the true vocal folds adduct during the swallow, a finite period of apnea must necessarily take place with each swallow. When relating swallowing to respiration, it has been demonstrated that swallowing occurs most often during expiration. The clinical significance of this finding is that patients with a baseline of compromised lung function will, over a period of time, develop respiratory distress as a meal progresses. Subsequently, false vocal fold adduction, adduction of the aryepiglottic folds and retroversion of the epiglottis take place. The aryepiglotticus (recurrent laryngeal nerve of vagus) contracts, causing the arytenoids to appose each other (closes the laryngeal aditus by bringing the aryepiglottic folds together), and draws the epiglottis down to bring its lower half into contact with arytenoids, thus closing the aditus. Retroversion of the epiglottis, while not the primary mechanism of protecting the airway from laryngeal penetration and aspiration, acts to anatomically direct the food bolus laterally towards the piriform fossa. Additionally, the larynx is pulled up with the pharynx under the tongue by stylopharyngeus (IX), salpingopharyngeus (pharyngeal plexus—IX, X), palatopharyngeus (pharyngeal plexus—IX, X) and inferior constrictor (pharyngeal plexus—IX, X).

10) Hyoid elevation

The hyoid is elevated by digastric (V & VII) and stylohyoid (VII), lifting the pharynx and larynx up even further.

11) Bolus transits pharynx

The bolus moves down towards the oesophagus by pharyngeal peristalsis which takes place by sequential contraction of the superior, middle and inferior pharyngeal constrictor muscles (pharyngeal plexus—IX, X). The lower part of the inferior constrictor (cricopharyngeus) is normally closed and only opens for the advancing bolus. Gravity plays only a small part in the upright position—in fact, it is possible to swallow solid food even when standing on one’s head.

Esophageal phase

12) Oesophageal peristalsis

Like the pharyngeal phase of swallowing, the esophageal phase of swallowing is under involuntary neuromuscular control. However, propagation of the food bolus is significantly slower than in the pharynx The bolus enters the oesophagus and is propelled downwards first by striated muscle (recurrent laryngeal, X) then by the smooth muscle (X) at a rate of 3 – 5 cm/sec.

13) Relaxation phase

Finally the larynx and pharynx move down with the hyoid mostly by elastic recoil. Then the larynx and pharynx move down from the hyoid to their relaxed positions by elastic recoil. Swallowing therefore depends on coordinated interplay between many various muscles, and although the initial part of swallowing is under voluntary control, once the deglutition process is started, it is quite hard to stop it.

Clinical significance

Swallowing becomes a great concern for the elderly since strokes and Alzheimer's disease can interfere with the autonomic nervous system. Speech therapy is commonly used to correct this condition since the speech process uses the same neuromuscular structures as swallowing.

Abnormalities of the pharynx and/or oral cavity may lead to oropharyngeal dysphagia. Abnormalities of the esophagus may lead to esophageal dysphagia. The failure of the lower esophagous sphincter to respond properly to swallowing is called achalasia.

In animals

In many birds, the oesophagus is largely merely a gravity chute, and in such events as a seagull swallowing a fish or a stork swallowing a frog, swallowing consists largely of the bird lifting its head with its beak pointing up and guiding the prey with tongue and jaws so that the prey slides inside and down.

In fish, the tongue is largely bony and much less mobile and getting the food to the back of the pharynx is helped by pumping water in its mouth and out of its gills.

In snakes, the work of swallowing is done by raking with the lower jaw until the prey is far enough back to be helped down by body undulations.

See also

References

External links


Simple English

Swallowing happens when food goes through the mouth of a person or animal into their throat. During swallowing, the food passes through a few organs called the pharynx, esophagus and lastly the stomach.








Got something to say? Make a comment.
Your name
Your email address
Message