The Full Wiki

Timbre: Wikis

Advertisements
  
  
  

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Encyclopedia

From Wikipedia, the free encyclopedia

Spectrogram of the first second of an E9 chord played on a Fender Stratocaster guitar with noiseless pickups. Courtesy M. Tribulas. Spectrogram generated with Fatpigdog's PC based Real Time FFT Spectrum Analyzer. Click below to hear the E9 chord:
9577 Guitarz1970 Clean E9 Guitar Chord (Mike Tribulas).ogg

In music, timbre (pronounced /ˈtæmbər/, like tahmber, or spelling pronunciation /ˈtɪmbər/; French: [tɛ̃bʁ]) is the quality of a musical note or sound or tone that distinguishes different types of sound production, such as voices or musical instruments. The physical characteristics of sound that mediate the perception of timbre include spectrum and envelope. Timbre is also known in psychoacoustics as tone quality or tone color.

For example, timbre is what, with a little practice, people use to distinguish the saxophone from the trumpet in a jazz group, even if both instruments are playing notes at the same pitch and loudness. Timbre has been called a "wastebasket" attribute[1] or category,[2] or "the psychoacoustician's multidimensional wastebasket category for everything that cannot be qualified as pitch or loudness"; i.e., the 'shape' of the sound.[3]

From a mathematical point of view, the timbre of a musical note can be described through a spectral analysis. Any sound can be decomposed into its constituent frequencies and amplitudes. A spectrogram is a plot of the frequency content of a sound as a function of time. In efforts to quantify the characteristic timbre of a musical note, a spectrogram offers utility. The spectrogram enables quantification of the musical note in terms of its specific spectral content and its temporal attack, sustain, decay and release. Thus, while the timbre of a musical note is difficult to quantify with notions such as pitch and loudness, the use of modern analytic tools and methods provides for its unambiguous characterization.

Contents

Synonyms

Tone quality and color are used as synonyms for timbre. Helmholtz used the German Klangfarbe (tone color), and Tyndall proposed an English translation, clangtint. But both terms were disapproved of by Alexander Ellis who also discredits register and color for their pre-existing English meanings (Erickson 1975, p. 7).

Colors of the optical spectrum are not generally explicitly associated with particular sounds. Rather, the sound of a musical instrument may be described with words like "bright", "dark", "warm" or "harsh" or other terms. There are also colors of noise such as pink or white.

American Standards Association definition

The American Standards Association defines timbre as "[...] that attribute of sensation in terms of which a listener can judge that two sounds having the same loudness and pitch are dissimilar". A note to the 1960 definition (p. 45) adds that "timbre depends primarily upon the spectrum of the stimulus, but it also depends upon the waveform, the sound pressure, the frequency location of the spectrum, and the temporal characteristics of the stimulus ."

Attributes

J.F. Schouten (1968, p. 42) describes the "elusive attributes of timbre" as "determined by at least five major acoustic parameters" which Robert Erickson (1975) finds "scaled to the concerns of much contemporary music":

  1. The range between tonal and noiselike character.
  2. The spectral envelope.
  3. The time envelope in terms of rise, duration, and decay (ADSR — attack, decay, sustain, release).
  4. The changes both of spectral envelope (formant-glide) and fundamental frequency (micro-intonation).
  5. The prefix, an onset of a sound quite dissimilar to the ensuing lasting vibration.

Spectra

The richness of a sound or note produced by a musical instrument is sometimes described in terms of a sum of a number of distinct frequencies. The lowest frequency is called the fundamental frequency and the pitch it produces is used to name the note. For example, in western music, instruments are normally tuned to A = 440 Hz. Other significant frequencies are called overtones of the fundamental frequency, which may include harmonics and partials. Harmonics are whole number multiples of the fundamental frequency — ×2, ×3, ×4, etc. Partials are other overtones. Most western instruments produce harmonic sounds, but many instruments produce partials and inharmonic tones, such as cymbals and other indefinite-pitched instruments.

When the orchestral tuning note is played, the sound is a combination of 440 Hz, 880 Hz, 1320 Hz, 1760 Hz and so on. The balance of the amplitudes of the different frequencies is responsible for the characteristic sound of each instrument.

The fundamental is not necessarily the strongest component of the overall sound. But it is implied by the existence of the harmonic series — the A above would be distinguishable from the one an octave below (220 Hz, 440 Hz, 880 Hz) by the presence of the 660 Hz third harmonic, even if the fundamental were indistinct. Similarly, a pitch is often inferred from non-harmonic spectra, supposedly through a mapping process, an attempt to find the closest harmonic fit, or a period over which the waveform approximately repeats.

It is possible to add artificial 'subharmonics' to the sound using electronic effects but, again, this does not affect the naming of the note.

William Sethares (2004) wrote that just intonation and the western equal tempered scale are related to the harmonic spectra/timbre of many western instruments in an analogous way that the inharmonic timbre of the Thai renat (a xylophone-like instrument) is related to the seven-tone near-equal temperament in which they are tuned. Similarly, the inharmonic spectra of Balinese metallophones combined with harmonic instruments such as the stringed rebab or the voice, are related to the five-note near-equal tempered slendro scale commonly found in Indonesian gamelan music.

Envelope

A signal and its envelope marked with red

The timbre of a sound is also greatly affected by the following aspects of its envelope: attack time and characteristics, decay, sustain, release (ADSR envelope) and transients. Thus these are all common controls on synthesizers. For instance, if one takes away the attack from the sound of a piano or trumpet, it becomes more difficult to identify the sound correctly, since the sound of the hammer hitting the strings or the first blat of the player's lips are highly characteristic of those instruments. The envelope is the overall amplitude structure of a sound, so called because the sound just "fits" inside its envelope: what this means should be clear from a time-domain display of almost any interesting sound, zoomed out enough that the entire waveform is visible.

In music

Timbre is often cited as one of the fundamental aspects of music. Formally, timbre and other factors are usually secondary to pitch. "To a marked degree the music of Debussy elevates timbre to an unprecedented structural status; already in L'Apres-midi d'un Faune the color of flute and harp functions referentially," according to Jim Samson (1977). Surpassing Debussy is Klangfarbenmelodie and surpassing that the use of sound masses.

Erickson (ibid, p. 6) gives a table of subjective experiences and related physical phenomena based on Schouten's five attributes:

Subjective Objective
Tonal character, usually pitched Periodic sound
Noisy, with or without some tonal character, including rustle noise Noise, including random pulses characterized by the rustle time (the mean interval between pulses)
Coloration Spectral envelope
Beginning/ending Physical rise and decay time
Coloration glide or formant glide Change of spectral envelope
Microintonation Small change (one up and down) in frequency
Vibrato Frequency modulation
Tremolo Amplitude modulation
Attack Prefix
Final sound Suffix

Often listeners are able to identify the kind of instrument even across "conditions of changing pitch and loudness, in different environments and with different players." In the case of the clarinet, an acoustic analysis of the waveforms shows they are irregular enough to suggest three instruments rather than one. David Luce (1963, p. 17) suggests that this implies "certain strong regularities in the acoustic waveform of the above instruments must exist which are invariant with respect to the above variables." However, Robert Erickson argues that there are few regularities and they do not explain our "powers of recognition and identification." He suggests the borrowing from studies of vision and visual perception the concept of subjective constancy. (Erickson 1975, p. 11)

See also

References

  1. ^ W. Dixon Ward (1965). "Psychoacoustics". in Aram Glorig. Audiometry: Principles and Practices. Williams & Wilkins Co. p. 55. http://books.google.com/books?id=XNVsAAAAMAAJ&q=timbre+wastebasket&dq=timbre+wastebasket&lr=&as_brr=0&ei=GdzvSMWaMYPWsgObmIWYBw&pgis=1. 
  2. ^ W. Dixon Ward (1970). "Musical Perception". in Jerry V. Tobias. Foundations of Modern Auditory Theory. 1. Academic Press. pp. 409. 
  3. ^ McAdams, S., and Bregman, A., "Hearing musical streams," Comput. Music J. 3, 26–63, 1979

Sources

  • Erickson, Robert (1975). Sound Structure in Music. University of California Press. ISBN 0-520-02376-5.
  • American Standards Association (1960). American Standard Acoustical Terminology. New York. Definition 12.9, Timbre, p. 45.
  • Luce, David A. (1963). "Physical Correlates of Nonpercussive Musical Instrument Tones", Ph.D. dissertation. MIT.
  • McAdams, Stephen, and Albert Bregman (1979). "Hearing Musical Streams". Computer Music Journal 3, no. 4 (December): 26–43.
  • Samson, Jim (1977). Music in Transition: A Study of Tonal Expansion and Atonality, 1900-1920. New York: W.W. Norton & Company. ISBN 0-393-02193-9.
  • Schouten, J. F. (1968). "The Perception of Timbre". Reports of the 6th International Congress on Acoustics, Tokyo, GP-6-2. Pp. 35–44, 90.
  • Sethares, William (2004). Tuning, Timbre, Spectrum, Scale. Springer, ISBN 3-540-76173-X.

Further reading

  • Stephen David Beck. "Designing Acoustically Viable Instruments in Csound" in Boulanger, Richard. The Csound Book.
  • Paolo Prandoni, then graduate student, wrote two papers on timbre [1]
Advertisements

Wiktionary

Up to date as of January 15, 2010

Definition from Wiktionary, a free dictionary

See also timbre

Contents

German

Etymology

From French timbre

Noun

Timbre n. (genitive Timbres, plural Timbres)

  1. timbre

Synonyms

  • Klangfarbe

Simple English

Timbre is a quality of sound. It is what makes two different musical instruments sound different from each other, even when each instrument plays the same musical note.


Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message