Tire: Wikis

  
  

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Encyclopedia

From Wikipedia, the free encyclopedia

Pneumatic automobile tire
An automobile tire failure showing a steel ply

A tire (or tyre in British English) is a ring-shaped covering that fits around a wheel to protect it and enable better vehicle performance by providing a flexible cushion that absorbs shock while keeping the wheel in close contact with the ground. The word itself is derived from the word "tie", referring to the outer steel ring part of a wooden cart wheel that ties the wood segments together.

The fundamental materials of modern tires are rubber and fabric along with other compound chemicals. They consist of a tread and a body. The tread provides traction while the body ensures support. Before rubber was invented, the first versions of tires were simply bands of metal that fitted around wooden wheels in order to prevent wear and tear. Today, the vast majority of tires are pneumatic, comprising a doughnut-shaped body of cords and wires encased in rubber and generally filled with compressed air to form an inflatable cushion. Pneumatic tires are used on many types of vehicles, such as bicycles, motorcycles, cars, trucks, earthmovers, and aircraft.

Etymology and spelling

The Oxford English Dictionary suggests that the word derives from "attire",[1] while other sources suggest a connection with the verb "to tie".[2] From the 15th to the 17th centuries the spellings tire and tyre were used without distinction;[1] but by 1700 tyre had become obsolete and tire remained as the settled spelling.[1] In the UK, the spelling tyre was revived in the 19th century for pneumatic tires, though many continued to use tire for the iron variety. The Times newspaper in Britain was still using tire as late as 1905.[3] The 1911 edition of the Encyclopædia Britannica states that "[t]he spelling 'tyre' is not now accepted by the best English authorities, and is unrecognized in America",[2], while Fowler's Modern English Usage of 1926 says that "there is nothing to be said for 'tyre', which is etymologically wrong, as well as needlessly divergent from our own [sc. British] older & the present American usage".[1]

History

Iron tires

The earliest tires were bands of iron (later steel), placed on wooden wheels, used on carts and wagons. The tire would be heated in a forge fire, placed over the wheel and quenched, causing the metal to contract and fit tightly on the wheel. A skilled worker, known as a wheelwright, carried out this work. The outer ring served to "tie" the wheel segments together for use, providing also a wear-resistant surface to the perimeter of the wheel. The word "tire" thus emerged as a variant spelling to refer to the metal bands used to tie wheels.

Rubber tires

The first practical pneumatic tire was made by John Boyd Dunlop, a Scot, in 1887 for his son's bicycle, in an effort to prevent the headaches his son had while riding on rough roads (Dunlop's patent was later declared invalid because of prior art by fellow Scot Robert William Thomson). Dunlop is credited with "realizing rubber could withstand the wear and tear of being a tire while retaining its resilience".[4]

Pneumatic tires are made of a flexible elastomer material, such as rubber, with reinforcing materials such as fabric and wire. Tire companies were first started in the early 20th century, and grew in tandem with the auto industry. Today, over 1 billion tires are produced annually, in over 400 tire factories, with the three top tire makers commanding a 60% global market share.[citation needed]

Chronology

  • 1843 – Charles Goodyear announces vulcanization
  • 1846 – Robert William Thomson invents and patents the pneumatic tire
  • 1880s – John Boyd Dunlop begins taping pneumatic tires to bicycle wheels .[5]
  • 1888 – First commercial pneumatic bicycle tire produced by Dunlop
  • 1889 – Dunlop patents the pneumatic tire in the UK
  • 1889 - Adolphe Clément sees a Dunlop pneumatic tyre in London and acquires the French manufacturing rights for 50,000 francs
  • 1890 – Dunlop, and William Harvey Du Cros begin production of pneumatic tires in Ireland; thickened beads, wire retainers, and shaped rims make taping tires to rims unnecessary.[5]
  • 1890 – Bartlett Clincher rim introduced
  • 1891 – Dunlop's patent invalidated in favor of Thomson’s
  • 1891 - The Michelin brothers patent a removable pneumatic tyre, used by Charles Terront to win the world's first long distance cycle race, Paris-Brest-Paris.
  • 1892 – Beaded edge tires introduced in the U.S.
  • 1893 – cotton reinforcing cords have appeared[5]
  • 1894 – E.J. Pennington invents the first balloon tire
  • 1895 – Michelin introduces pneumatic automobile tires; André Michelin uses corded tires in Paris-Bordeaux-Paris rally:[5] by 1897, they are standard racing tires[5]
  • 1898 – Schrader valve stem patented
  • 1900 – Cord tires introduced by Palmer (England) and BFGoodrich (U.S.)
  • 1903 – Goodyear Tire Company patents the first tubeless tire, which was introduced in 1954 by Goodyear on Packards)[6]
  • 1904 – Goodyear and Firestone start producing cord-reinforced tires
  • 1904 – Mountable rims introduced, allowing drivers to fix their own flats
  • 1906 – First pneumatic aircraft tire
  • 1908 – Frank Seiberling invents grooved tires with improved road traction
  • 1900s – tire companies experiment with adding leather, wood, and steel to improve durability[5]
  • 1910 – Silvertown Rubber Company (London) adds carbon black to white rubber, increasing durability: now universal[5]
  • 1919 – Goodyear and Dunlop announce pneumatic truck tires[7]
  • 1923 – first balloon tire, named for larger cross-section and lower pressure, introduced by Firestone: debut on the first Chrysler, the 70, in 1924[5]
  • 1929 – solid automobile tires cease to be used[5]
  • 1938 – Goodyear introduces the rayon cord tire
  • 1940 – BFGoodrich introduces the first commercial synthetic rubber tire
  • 1946 – Michelin introduces the radial tire
  • 1947 – Goodyear introduces first nylon belted tires
  • 1947 – BFGoodrich announces the tubeless tire[8]
  • 1963 – Use of polyester cord introduced by Goodyear
  • 1965 – Armstrong Rubber introduces the bias belted fiberglass tire
  • 1965 – BFGoodrich offers the first radial available in North America
  • 1967 – Poly/glass tires introduced by Firestone and Goodyear
  • 1968 – United States Department of Transportation (DOT) numbers required on new tires in USA
  • 1974 – Pirelli introduces the wide (low aspect ratio) radial tire

For a list of tire companies and the dates they were established, see List of Tire Companies.

Manufacturing

Pneumatic tires are manufactured according to relatively standardized processes and machinery, in around 450 tire factories in the world. Over 1 billion tires are manufactured annually, making the tire industry the majority consumer of natural rubber. Tire factories start with bulk raw materials such as rubber, carbon black, and chemicals and produce numerous specialized components that are assembled and cured. This article describes the components assembled to make a tire, the various materials used, the manufacturing processes and machinery, and the overall business model.

Assembly

Tread

The tread is the part of the tire which comes in contact with the road surface. The tread is a thick rubber, or rubber/composite compound formulated to provide an appropriate level of traction that does not wear away too quickly. The tread pattern is characterized by the geometrical shape of the grooves, lugs, voids and sipes. Grooves run circumferentially around the tire, and are needed to channel away water. Lugs are that portion of the tread design that contacts the road surface. Voids are spaces between lugs that allow the lugs to flex and evacuate water. Tread patterns feature non-symmetrical (or non-uniform) lug sizes circumferentially in order to minimize noise levels at discrete frequencies. Sipes are valleys cut across the tire, usually perpendicular to the grooves, which allow the water from the grooves to escape to the sides in an effort to prevent hydroplaning.

Treads are often designed to meet specific product marketing positions. High performance tires have small void ratios to provide more rubber in contact with the road for higher traction, but may be compounded with softer rubber that provides better traction, but wears quickly. Mud and snow (M&S) tires are designed with higher void ratios to channel away rain and mud, while providing better gripping performance. Specialized tires will always work better than general/all purpose/all weather tires when being used in the conditions the specialized tires are designed for.

Treadwear

The treadwear grade describes how long the tire manufacturers expects the tire to last. A Course Monitoring Tire (the standard tire that a test tire will be compared to) has a rating of "100". If a manufacturer assigns a treadwear rating of 200 to a new tire, they are indicating that they expect the new tire to have a useful lifespan that is 200% of the life of a Course Monitoring Tire. The "test tires" are all manufacturer dependant. Brand A's rating of 500 is not necessarily going to give you the same milage rating as Brand B's tire of the same rating. The testing is non-regulated and can vary greatly. Treadwear ratings are only useful for comparing Brand A's entire lineup against itself.

Tread lug Tread lugs provide the contact surface necessary to provide traction. As the tread lug enters the road contact area, or footprint, it is compressed. As it rotates through the footprint it is deformed circumferentially. As it exits the footprint, it recovers to its original shape. During the deformation and recovery cycle the tire exerts variable forces into the vehicle.[citation needed] These forces are described as Force Variation.[citation needed]

Tread void

Tread voids provide space for the lug to flex and deform as it enters and exits the footprint. Voids also provide channels for rainwater, mud, and snow to be channeled away from the footprint. The void ratio is the void area of the tire divided by the entire tread area. Low void areas have high contact area and therefore higher traction on clean, dry pavement.

Rain groove

The rain groove is a design element of the tread pattern specifically arranged to channel water away from the footprint. Rain grooves are circumferential in most truck tires. Many high performance passenger tires feature rain grooves that are angled from the center toward the sides of the tire.[citation needed] Some tire manufacturers claim that their tread pattern is designed to actively pump water out from under the tire by the action of the tread flexing.[citation needed] This results in a smoother ride in different types of weather.[citation needed]

Sipe Tread lugs often feature small narrow voids, or sipes, that improve the flexibility of the lug to deform as it traverses the footprint area. This reduces shear stress in the lug and reduces heat build up.[citation needed] Sipes also provide greater traction in wet or icy conditions.

Wear bar Wear bars (or wear indicators) are raised features located at the bottom of the tread grooves that indicate the tire has reached its wear limit. When the tread lugs are worn to the point that the wear bars connect across the lugs, the tires are fully worn and should be taken out of service. Most wear bars indicate a remaining tread depth of 2/32's of an inch and are deemed "worn out" at that point. [9]

Contact patch

The contact patch, or footprint, of the tire, is merely the area of the tread which is in contact with the road surface. This is the area which transmits forces between the tire and the road via friction. The length-to-width ratio of the contact patch will affect steering and cornering behavior.

Bead The bead is that part of the tire which contacts the rim on the wheel. The bead is typically reinforced with steel wire and compounded of high strength, low flexibility rubber. The bead seats tightly against the two rims on the wheel to ensure that a tubeless tire holds air without leakage. The bead fit is tight to ensure the tire does not shift circumferentially as the wheel rotates. The width of the rim in relationship to the tire is a factor in the handling characteristics of an automobile, because the rim supports the tire's profile.

Sidewall

Uneven sidewall wear, down to fabric plies, due to significant under-inflation

The sidewall is that part of the tire that bridges between the tread and bead. The sidewall is largely rubber but reinforced with fabric or steel cords that provide for strength and flexibility. The sidewall transmits the torque applied by the drive axle to the tread in order to create traction. The sidewall, in conjunction with the air inflation, also supports the load of the vehicle. Sidewalls are molded with manufacturer-specific detail, government mandated warning labels, and other consumer information, and sometimes decorative ornamentation, like whitewalls.

Shoulder The shoulder is that part of the tire at the edge of the tread as it makes transition to the sidewall.

Inner tube

Almost all bicycle tires, many motorcycle tires, and many tires for large vehicles such as buses, heavy trucks and tractors are designed for use with inner tubes. Inner tubes are torus-shaped balloons made from an impermeable material, such as soft, elastic synthetic rubber, to prevent air leakage. The inner tubes are inserted into the tire and inflated to retain air pressure.

Wheel

Tires are mounted to wheels that bolt to the hub. The beads of the tire are held on the wheel's rim largely by the internal tire force from the air pressure. Automotive wheels are typically made from pressed and welded steel, or a composite of lightweight metal alloys, such as aluminum or magnesium. These alloy wheels may be either cast or forged. A decorative hubcap and trim ring may be placed over the wheel.

Valve stem

Valve stem with its cap removed

The valve stem is a tube made of steel or rubber with a metal valve used to inflate the tire with air. Valve stems usually protrude through the wheel for easy access for inflation. Tires are inflated through a valve, typically a Schrader valve on automobiles and most bicycle tires, or a Presta valve on high performance bicycles. The rubber in valve stems eventually degrades. Replacement of the valve stem at regular intervals reduces the chance of failure.

Construction types

Bias

Bias tire (or cross ply) construction utilizes body ply cords that extend diagonally from bead to bead, usually at angles in the range of 30 to 40 degrees, with successive plies laid at opposing angles forming a crisscross pattern to which the tread is applied. The design allows the entire tire body to flex easily, providing the main advantage of this construction, a smooth ride on rough surfaces. This cushioning characteristic also causes the major disadvantages of a bias tire: increased rolling resistance and less control and traction at higher speeds.

Belted bias

A belted bias tire starts with two or more bias-plies to which stabilizer belts are bonded directly beneath the tread. This construction provides smoother ride that is similar to the bias tire, while lessening rolling resistance because the belts increase tread stiffness. The plies and belts are at different angles, which improves performance compared to non-belted bias tires. The belts may be cord or steel.

Radial

Radial tire construction utilizes body ply cords extending from the beads and across the tread so that the cords are laid at approximately right angles to the centerline of the tread, and parallel to each other, as well as stabilizer belts directly beneath the tread. The belts may be cord or steel. The advantages of this construction include longer tread life, better steering control, and lower rolling resistance. Disadvantages of the radial tire include a harder ride at low speeds on rough roads and in the context of off-roading, decreased "self-cleaning" ability and lower grip ability at low speeds.[10]

Solid

Many tires used in industrial and commercial applications are non-pneumatic, and are manufactured from solid rubber and plastic compounds via molding operations. Solid tires include those used for lawn mowers, skateboards, golf carts, scooters, and many types of light industrial vehicles, carts, and trailers. One of the most common applications for solid tires is for material handling equipment (forklifts). Such tires are installed by means of a hydraulic tire press.

Semi-pneumatic

Semi-pneumatic tires have a hollow center, but they are not pressurized. They are light-weight, low-cost, puncture proof, and provide cushioning.[11] These tires often come as a complete assembly with the wheel and even integral ball bearings. They are used on lawn mowers, wheelchairs, and wheelbarrows. They can also be rugged, typically used in industrial applications[12], and are designed to not pull off their rim under use.

Tires that are hollow but are not pressurized have also been designed for automotive use, such as the Tweel (a portmanteau of tire and wheel) which is an experimental tire design being developed at Michelin. The outer casing is rubber as in ordinary radial tires, but the interior has special compressible polyurethane springs to contribute to a comfortable ride. Besides the impossibility of going flat, the tires are intended to combine the comfort offered by higher-profile tires (with tall sidewalls) with the resistance to cornering forces offered by low profile tires. They have not yet been delivered for broad market use.

Specifications

Tire pressure monitoring system

Tire pressure monitoring systems (TPMS) are electronic systems that monitor the tire pressures on individual wheels on a vehicle, and alert the driver when the pressure goes below a warning limit. There are several types of designs to monitor tire pressure. Some actually measure the air pressure, and some make indirect measurements, such as gauging when the relative size of the tire changes due to lower air pressure.

Inflation pressure Tires are specified by the vehicle manufacturer with a recommended inflation pressure, which permits safe operation within the specified load rating and vehicle loading. Most tires are stamped with a maximum pressure rating (for USA only). For passenger vehicles and light trucks, the tires should be inflated to what the vehicle manufacturer recommends, which is usually located on a decal just inside the driver's door or in the vehicle owners handbook. Tires should not be inflated to the pressure on the sidewall; this is the maximum pressure, rather than the recommended pressure.[13]

If tire pressure is too high, the tire contact patch is reduced. This decreases rolling resistance, but does not necessarily decrease braking distance.[14] In addition, ride comfort is reduced and the center of the tread may wear more quickly than the shoulder.[15]

If tire pressure is too low, the tire contact patch is increased. This increases rolling resistance, tire flexing, and friction between the road and tire. Underinflation can lead to tire overheating, premature tread wear, and tread separation in severe cases. Significant underinflation can also increase braking distance.[16]

Load rating Tires are specified by the manufacturer with a maximum load rating. Loads exceeding the rating can result in unsafe conditions that can lead to steering instability and even rupture. For a table of load ratings, see tire codes.

Speed rating The speed rating denotes the maximum speed at which a tire is designed to be operated. For passenger vehicles these ratings range from 99 mph (160 km/h) to 186 mph (300 km/h). For a table of speed ratings, see tire code.

Replacing a tire on a vehicle with one with a lower speed rating than originally specified by the vehicle manufacturer will often render the insurance invalid.

Service rating Tires (especially in the USA) are often given service ratings, mainly used on bus and truck tires. Some ratings are for long-haul, and some for stop-start multi-drop type work. Tires designed to run 500+ miles per day carrying heavy loads require special specifications.

Rotation Tires may exhibit irregular wear patterns once installed on a vehicle and partially worn. Furthermore, front-wheel drive vehicles will wear the front tires at a greater rate compared to the rears. Tire rotation is the procedure of moving tires to different car positions, such as front-to-rear, in order to even out the wear, thereby extending the life of the tire.

Wheel alignment

When mounted on the vehicle, the wheel and tire may not be perfectly aligned to the direction of travel, and therefore may exhibit irregular wear. If the discrepancy in alignment is large, then the irregular wear will become quite substantial if left uncorrected.

Wheel alignment is the procedure for checking and correcting this condition through adjustment of camber, caster and toe angles. These settings also affect the handling characteristics of the vehicle.

Retread

Tires that are fully worn can be re-manufactured to replace the worn tread. This is known as retreading or recapping, a process of buffing away the worn tread and applying a new tread.[17] Retreading is economical for truck tires because the cost of replacing the tread is less than the price of a new tire. Retreading passenger tires is less economical because the cost of retreading is high compared to the price of new cheap tires, but favorable compared to high-end brands.

Worn tires can be retreaded by two methods, the mold or hot cure method and the pre-cure or cold one. The mold cure method involves the application of raw rubber on the previously buffed and prepared casing, which is later cured in matrices. During the curing period, vulcanization takes place and the raw rubber bonds to the casing, taking the tread shape of the matrix. On the other hand, the pre-cure method involves the application of a ready-made tread band on the buffed and prepared casing, which later is cured in an autoclave so that vulcanization can occur.

During the retreading process, retread technicians must ensure the casing is in the best condition possible, in order to minimize the possibility of a casing failure. Casings with problems such as capped tread, tread separation, unrepairable cuts, corroded belts or sidewall damage, or any run-flat or skidded tires, will be rejected.

In most situations, retread tires can be driven under the same conditions and at the same speeds as new tires with no loss in safety or comfort.[18] The percentage of retread failures should be about the same as for new tire failures, but many drivers, including truckers, are guilty of not maintaining proper air pressure on a regular basis, and, if a tire is abused (overloaded, underinflated, or mismatched to the other tire on a set of duals), then that tire (new or recapped) will fail.[19]

Many commercial trucking companies put retreads only on trailers, using only new tires on their steering and drive wheels. This procedure increases the driver's chance of maintaining control in case of problems with a retreaded tire.

Performance characteristics

Tread wear Tread wear, also known as tire wear, is caused by friction between the tire and the road surface. Government legal standards prescribe the minimum allowable tread depth for safe operation.

There are several types of abnormal tread wear. Poor wheel alignment can cause excessive wear of the innermost or outermost ribs. Gravel roads, rocky terrain, and other rough terrain will cause accelerated wear. Over inflation above the sidewall max can cause excessive wear to the center of the tread. However, inflating up to the sidewall limit will not cause excessive wear in the center of the tread. Modern tires have steel belts built in to prevent this. Under inflation causes excessive wear to the outer ribs. Quite often the placard pressure is too low and most tires are underinflated as a result.[citation needed] Unbalanced wheels can cause uneven tire wear, as the rotation may not be perfectly circular. Tire manufacturers and car companies have mutually established standards for tread wear testing that include measurement parameters for tread loss profile, lug count, and heel-toe wear. See also TKPH below.

Dry traction Dry traction is measure of the tire’s ability to deliver traction, or grip, under dry conditions. Dry traction increases in proportion to the tread contact area. Dry traction is also a function of the tackiness of the rubber compound.

Wet traction Wet traction is measure of the tire's ability to deliver traction, or grip, under wet conditions. Wet traction is improved by the tread design's ability to channel water out of the tire footprint and reduce hydroplaning. However, tires with a circular cross-section, such as those found on racing bicycles and motorcycles, when properly inflated have a sufficiently small footprint to not be susceptible to hydroplaning. For such tires, it is observed that fully slick tires will give superior traction on both wet and dry pavement.[20]

Force variation The tire tread and sidewall elements undergo deformation and recovery as they enter and exit the footprint. Since the rubber is elastomeric, it is compressed during this cycle. As the rubber deforms and recovers it imparts cyclical forces into the vehicle. These variations are collectively referred to as Tire Uniformity. Tire Uniformity is characterized by Radial Force Variation (RFV), Lateral Force Variation (LFV), and Tangential Force Variation. Radial and Lateral Force Variation is measured on a Force Variation Machine at the end of the manufacturing process. Tires outside the specified limits for RFV and LFV are rejected. In addition, Tire Uniformity Machines are used to measure geometric parameters including Radial Runout, Lateral Runout, and Sidewall Bulge in the tire factory at the end of the manufacturing process as a quality check. In the late 1990s Hunter Engineering introduced the GSP9700 Road Force balancer which is equipped with a load roller similar to the Force Variation Machine used at the factory to grade tire uniformity. This machine can find the best position for the tire on a given wheel so the over-all assembly is as round as possible.

Balance When a wheel and tire is rotated, it will exert a centrifugal force characteristic of its center of gravity. This cyclical force is referred to as balance, and a non-uniform force is referred to as imbalance or unbalance. Tires are checked at the point of manufacture for excessive static imbalance and dynamic imbalance using automatic Tire Balance Machines. Tires are checked again in the auto assembly plant or tire retail shop after mounting the tire to the wheel. Assemblies that exhibit excessive imbalance are corrected by applying balance weights to the wheels to counteract the tire/wheel imbalance.

To facilitate proper balancing, most high performance tire manufacturers place red and yellow marks on the sidewalls of its tires to enable the best possible match-mounting of the tire/wheel assembly. There are two methods of match-mounting high performance tire to wheel assemblies using these red (Uniformity) or yellow (Weight) marks[21].

Centrifugal growth A tire rotating at higher speeds will tend to develop a larger diameter, due to centrifugal forces that force the tread rubber away from the axis of rotation. As the tire diameter grows the tire width decreases. This centrifugal growth can cause rubbing of the tire against the vehicle at high speeds. Motorcycle tires are often designed with reinforcements aimed at minimizing centrifugal growth.

Rolling resistance

Rolling resistance is the resistance to rolling caused by deformation of the tire in contact with the road surface. As the tire rolls, tread enters the contact area and is deformed flat to conform to the roadway. The energy required to make the deformation depends on the inflation pressure, rotating speed, and numerous physical properties of the tire structure, such as spring force and stiffness. Tire makers seek lower rolling resistance tire constructions in order to improve fuel economy in cars and especially trucks, where rolling resistance accounts for a high proportion of fuel consumption.

The pneumatic tire also has the more important effect of vastly reducing rolling resistance compared to a solid tire. Because the internal air pressure acts in all directions, a pneumatic tire is able to "absorb" bumps in the road as it rolls over them without experiencing a reaction force opposite to the direction of travel, as is the case with a solid (or foam-filled) tire. The difference between the rolling resistance of a pneumatic and solid tire is easily felt when propelling wheelchairs or baby buggies fitted with either type so long as the terrain has a significant roughness in relation to the wheel diameter.[citation needed]

Stopping distance The use of performance oriented tires, which have a tread pattern and rubber compounds designed to grip the road surface, usually has slightly shorter stopping distances. However, specific braking tests are necessary for data beyond generalizations.

TKPH Ton kilometre per hour (TKPH) is the measurement of the work load of a tire and is used for monitoring its work so that it is not put under undue stress which may lead to its premature failure.[22] The measurement's appellation and units are the same. The recent shortage and increasing cost of tires for heavy equipment has made TKPH an important parameter in tire selection and equipment maintenance for the mining industry. For this reason tire manufacturers of large earth-moving and mining vehicles assign TKPH ratings to their tires based on their size, construction, tread type, and rubber compound.[23][24] The rating is based on the weight and speed that the tire can handle without overheating and causing it to deteriorate prematurely. The equivalent measure used in the United States is ton mile per hour (TMPH).

Markings

DOT code

In the United States, the DOT Code is an alphanumeric character sequence molded into the sidewall of the tire for purposes of tire identification. The DOT Code is mandated by the US Department of Transportation. The DOT Code is useful in identifying tires in a product recall.

The DOT Code begins with the letters "DOT" followed by a plant code (two numbers or letters) that identifies where it was manufactured. The last four numbers represent the week and year the tire was built. A three-digit code was used for tires manufactured before the year 2000. For example, 178 means it was manufactured in the 17th week of 8th year of the decade. In this case it means 1988. For tires manufactured in the 1990s, the same code holds true, but there is a little triangle (Δ) after the DOT code. Thus, a tire manufactured in the 17th week of 1998 would have the code 178Δ. In 2000, the code was switched to a 4-digit code. Same rules apply, so for example, 3003 means the tire was manufactured in the 30th week of 2003.

Other numbers are marketing codes used at the manufacturer's discretion.

E-mark All tires sold for road use in Europe after July 1997 must carry an E-mark. The mark itself is either an upper case "E" or lower case "e" - followed by a number in a circle or rectangle, followed by a further number. An (upper case) "E" indicates that the tire is certified to comply with the dimensional, performance and marking requirements of ECE regulation 30. A (lower case) "e" indicates that the tire is certified to comply with the dimensional, performance and marking requirements of Directive 92/23/EEC. The number in the circle or rectangle denotes the country code of the government that granted the type approval. The last number outside the circle or rectangle is the number of the type approval certificate issued for that particular tire size and type.

Mold serial number Tire manufacturers usually embed a mold serial number into the sidewall area of the mold, so that the tire, once molded, can be traced back to the mold of original manufacture.

Codes

Vehicle applications

Tires are classified into several standard types, based on the type of vehicle they serve. Since the manufacturing process, raw materials, and equipment vary according to the tire type, it is common for tire factories to specialize in one or more tire types. In most markets, factories that manufacture passenger and light truck radial tires are separate and distinct from those that make aircraft or OTR tires.[citation needed]

Passenger and light truck types

High performance

High performance tires are designed for use at higher speeds, and more often, a more "sporty" driving style. They feature a softer rubber compound for improved traction, especially on high speed cornering. The trade off of this softer rubber is shorter tread life.

High performance street tires sometimes sacrifice wet weather handling by having shallower water channels to provide more actual rubber tread surface area for dry weather performance.[citation needed] The ability to provide a high level of performance on both wet and dry pavement varies widely among manufacturers, and even among tire models of the same manufacturer. This is an area of active research and development, as well as marketing.

Mud and snow

Mud and Snow, (or M+S, or M&S), is a classification for specific winter tires designed to provide improved performance under low temperature conditions, compared to all-season tires. The tread compound is usually softer than that used in tires for summer conditions, thus providing better grip on ice and snow, but wears more quickly at higher temperatures. Tires may have well above average numbers of sipes in the tread pattern to grip the ice.

Dedicated winter tires will bear the "Mountain/Snowflake Pictograph" if designated as a winter/snow tire by the American Society for Testing & Materials. Winter tires will typically also carry the designation MS, M&S, or the words MUD AND SNOW (but see All-season tires, below).

Studded, highly-siped, winter tire

Some winter tires may be designed to accept the installation of metal studs for additional traction on icy roads. The studs also roughen the ice, thus providing better friction between the ice and the soft rubber in winter tires. Use of studs is regulated in most countries, and even prohibited in some locales due to the increased road wear caused by studs. Typically, studs are never used on heavier vehicles. Studded tires are used in the upper tier classes of ice racing[25] and rallying.

Other winter tires rely on factors other than studding for traction on ice, e.g. highly porous or hydrophilic rubber that adheres to the wet film on the ice surface.

Some jurisdictions may from time to time require snow tires, or traction aids (e.g. tire chains) on vehicles driven in certain areas during extreme conditions.

Mud tires are specialty tires with large, chunky tread patterns designed to bite into muddy surfaces. The large, open design also allows mud to clear quickly from between the lugs. Mud terrain tires also tend to be wider than other tires, to spread the weight of the vehicle over a greater area to prevent the vehicle from sinking too deeply into the mud. However in reasonable amounts of mud and snow, tires should be thinner. Due to them having a thinner wheel base, the tire will have more pressure on the road surface, thus allowing the tires to penetrate the snow layer and grip harder snow or road surface beneath. This does not compensate when the snow is too deep for such penetration.

All season

The All Season tire classification is a compromise between one developed for use on dry and wet roads during summer and one developed for use under winter conditions. The type of rubber and the tread pattern best suited for use under summer conditions cannot, for technical reasons, give good performance on snow and ice. The all-season tire is a compromise, and is neither an excellent summer tire nor an excellent winter tire. They have, however, become almost ubiquitous as original and replacement equipment on automobiles marketed in the United States, due to their convenience and their adequate performance in most situations. All-Season tires are also marked for mud and snow the same as winter tires but rarely with a snowflake. Owing to the compromise with performance during summer, winter performance is usually poorer than a winter tire.

All-terrain

All-terrain tires are typically used on SUVs and light trucks. These tires often have stiffer sidewalls for greater resistance against puncture when traveling off-road, the tread pattern offers wider spacing than all-season tires to remove mud from the tread. Many tires in the all-terrain category are designed primarily for on-road use, particularly all-terrain tires that are originally sold with the vehicle.

Spare

Some vehicles carry a spare tire, already mounted on a wheel, to be used in the event of flat tire or blowout. Minispare, or "space-saver spare" tires are smaller than normal tires to save on trunk/boot space, gas mileage, weight and cost. Minispares have a short life expectancy, and low speed rating.

Run-flat

Several innovative designs have been introduced that permit tires to run safely with no air for a limited range at a limited speed. These tires typically feature strong, load-supporting sidewalls. An infamous example of an alternate run flat technology has plastic load-bearing inserts attached to the rim instead of the reinforced sidewalls.

A disadvantage is that run flat tires cannot be repaired if a puncture occurs, this is due to manufacturer's informing the automotive industry that you cannot tell what kind of state the sidewall is in due to the compacted sidewall of rubber.

Heavy duty truck

Heavy duty tires are also referred to as Truck/Bus tires. These are the tire sizes used on vehicles such as commercial freight trucks, dump trucks, and passenger buses. Truck tires are sub-categorized into specialties according to vehicle position such as steering, drive axle, and trailer. Each type is designed with the reinforcements, material compounds, and tread patterns that best optimize the tire performance.

Off-the-road (OTR)

OTR tires being transported

The OTR tire classification includes tires for construction vehicles such as wheel loaders, backhoes, graders, trenchers, and the like; as well as large mining trucks. OTR tires can be of either bias or radial construction although the industry is trending toward increasing use of radial. Bias OTR tires are built with a large number of reinforcing plies to withstand severe service conditions and high loads.

Dramatically increasing commodity prices has led to shortages of new tires. As a consequence, multi-million dollar trucks can be idled for lack of tires, costing mines millions of dollars in lost productivity. This has led to a stronger effort to recycle old OTR tires. As of 2008, a new OTR tire can cost up to $50,000; retread tires are sold at half the price of new tires, and last 80% as long.[26] Retreading an OTR tire is labor intensive. First, the retreading technician must place the old tire in a buffing machine to remove what remains of the old tread; "skiving" follows this, which is the removal, by hand, of material the buffing misses. Next, the technician must inspect the tire, repairing defects. Lastly, the technician fills holes in the tire with rubber, applies a cement gum adhesive, and places the tire on a machine which will apply a new tread.[27]

Agricultural

The agricultural tire classification includes tires used on farm vehicles, typically tractors and specialty vehicles like harvesters. Driven wheels have very deep, widely spaced lugs to allow the tire to grip soil easily. High flotation tires are used in swampy environments and where soil compaction is a concern, featuring large footprints at low inflation pressures.

Racing

NASCAR tires

Racing tires are highly specialized according to vehicle and race track conditions. This classification includes tires for drag racing,Auto-x, drifting, Time Attack, Road Racing - as well as the large-market race tires for Formula One, IndyCar, NASCAR, rallying, MotoGP and the like. Tires are specially engineered for specific race tracks according to surface conditions, cornering loads, and track temperature. Racing tires often are engineered to minimum weight targets, so tires for a 500 mile race may run only 100 miles before a tire change. Some tire makers invest heavily in race tire development as part of the company's marketing strategy and a means of advertising to attract customers.

Racing tires often are not legal for normal highway use.

Industrial

The Industrial tire classification is a bit of a catch-all category and includes pneumatic and non-pneumatic tires for specialty industrial and construction equipment such as skid loaders and fork lift trucks.

Bicycle

A Cheng Shin brand bicycle tire in the style of a cruiser bicycle

This classification includes all forms of bicycle tires, including road racing tires, mountain bike tires, snow tires, and tubular tires, used also with other human-powered vehicles (see Category:Human-powered vehicles).

Aircraft

Changing a tire on a P-3C Orion aircraft

Aircraft tires are designed to withstand extremely heavy loads for short durations. The number of tires required for aircraft increases with the weight of the plane (because the weight of the airplane is distributed better). Aircraft tire tread patterns are designed to facilitate stability in high crosswind conditions, to channel water away to prevent hydroplaning, and for braking effect. Aircraft tires are usually inflated with nitrogen or helium in order to minimize expansion and contraction from extreme changes in ambient temperature and pressure experienced during flight.[citation needed] Dry nitrogen expands at the same rate as other dry atmospheric gases, but common compressed air sources may contain moisture, which increases the expansion rate with temperature. Aircraft tires generally operate at high pressures, up to 200 psi (13.8 bar) for airliners, and even higher for business jets. Tests of airline aircraft tires have shown that they are able to sustain pressures of maximum 800 psi (55.2 bar) before bursting. During the test the tires have to be filled with water, instead of helium or nitrogen which is the common content of aircraft tires, to prevent the test room being blown apart by the energy when the tire bursts.

Aircraft tires also include heat fuses, designed to melt at a certain temperature. Tires often overheat if maximum braking is applied during a rejected takeoff or an emergency landing. The fuses provide a safer failure mode that prevents tire explosions by deflating in a controlled manner, thus minimizing damage to aircraft and objects in the surrounding environment.

The main purpose of requiring that an inert gas, such as nitrogen, be used instead of air, for inflation of tires on certain transport category airplanes is prompted by at least three cases in which the oxygen in air-filled tires combined with volatile gases given off by a severely overheated tire and exploded upon reaching autoignition temperature. The use of an inert gas for tire inflation will eliminate the possibility of a tire explosion.[28]

Motorcycle

There are many different types of motorcycle tires:

Sport Touring - these tires are generally not used for high cornering loads, but for long straights, good for riding across the country.

Sport Street - these tires are for aggressive street riders that spend most of their time carving corners on public roadways. These tires do not have a long life, but in turn have better traction in high speed cornering. Street and sport street tires have good traction even when cold, but when warmed too much, can actually lose traction as their internal temperature increases.

Track or Slick - these tires are for track days or races. They have more of a triangular form, which in turn gives a larger contact patch while leaned over. These tires are not recommended for the street by manufacturers, and are known to have a shorter life on the street. Due to the triangulation of the tire, there will be less contact patch in the center, causing the tire to develop a flat spot quicker when used to ride on straightaways for long periods of time and have no tread so they lose almost all grip in wet conditions. Racing slicks are also made of a harder rubber compound and do not provide as much traction as street tires until warmed to a higher internal temperature than street tires normally operate at. Most street riding will not put a sufficient amount of friction on the tire to maintain the slicks optimal tire temperature, especially in colder climates and in spring and fall.

Sound and vibration characteristics

The design of treads and the interaction of specific tire types with the roadway surface type produces considerable effect upon sound levels or noise pollution emanating from moving vehicles. These sound intensities increase with higher vehicle speeds.[29] There is a considerable range in acoustical intensities produced depending upon the specific tire tread design and its interaction with the roadway surface type. There is a study "under development" which will be able to predict the interior noise due to the vibrations of a rolling tire structurally transmitted to the hub of a vehicle".[30]

Regulatory bodies

DOT The United States Department of Transportation (DOT) is the US governmental body authorized by the US Congress to establish and regulate transportation safety in the USA.

NHTSA The National Highway and Traffic Safety Administration (NHTSA) is a US government body within the Department of Transportation tasked with regulating automotive safety in the USA.

UTQG The Uniform Tire Quality Grading System (UTQG), is a system for comparing the performance of tires, established by the United States National Highway Traffic Safety Administration according to the Code of Federal Regulations 49 CFR 575.104. The UTQG regulation requires labeling of tires for tread wear, traction, and temperature.

T&RA The Tire and Rim Association (T&RA) is a voluntary US standards organization to promote the interchangeability of tires and rim and allied parts. Of particular interest, they published key tire dimension standards, key rim contour dimension standards, key tire valve dimension standards, and load / inflation standards.

ETRTO The European Tyre and Rim Technical Organization (ETRTO) is the European standards organization "to establish engineering dimesions, load/pressure characteristics and operating guidelines" .[31] for tires, rims and valves. It is analogous to TR&A.

JATMA The Japanese Automobile Tire Manufacturers Association (JATMA) is the Japanese standards organization for tires, rims anbd valves. It is analogous to TR&A and ETRTO.

TREAD Act The Transportation Recall Enhancement, Accountability and Documentation Act (TREAD Act) is a United States federal law that sets standards for testing and the reporting of information related to products involved with transportation such as cars and tires.

RFID tags Radio Frequency IDentification tags (RFID) are passive transponders affixed to the inside of the tire for purposes of automatic identification.[citation needed] Tags are encoded with various types of manufacturing data, including the manufacturer’s name, location of manufacture, tire type, manufacturing date, and in some cases test data. RFID transponders can remotely read this data automatically. RFID tags are used by auto assemblers to identify tires at the point of assembly to the vehicle.[citation needed] Fleet operators utilize RFID as part of tire maintenance operations.

Safety

Proper vehicle safety requires specific attention to inflation pressure, tread depth, and general condition of the tires. Over-inflated tires run the risk of explosive decompression (they may pop). On the other hand, under-inflated tires have a higher rolling resistance and suffer from overheating and rapid tread wear particularly on the edges of the tread. Excessive tire wear will reduce steering and braking response[citation needed], and tires worn down past their safety margins and into the casing run the very real risk of rupturing. Also, certain combinations of cross ply and radial tires on different wheels of the same vehicle can lead to vehicle instability, and may also be illegal. Tire inflation pressure and tread depth should be checked regularly in accordance with the vehicle manufacturer’s recommendations.

Tires should be repaired only at experienced tire repair shops, and in accordance with the manufacturer’s recommendations.

Penny Test - test for safe tread depth

A common test in the USA to check for excessive tire wear is to insert a US penny into the tread to see if it has been reduced to 1/16 or 2/32 of an inch. If part of Lincoln's head is covered by the tread, the tire has a legal amount of tread. If all of his head can be seen, however, it is time to replace the tire. It's important to note that a tire that just passes the "penny test" could be still be dangerous when driving in snow and could increase the risk of hydroplaning.

Outside of the USA, the head of an unused match can be inserted into the tire's tread. If the tread is at any point below 3/4 of the head, the tire should be replaced. This test is most common in the EU, Australasia, and Asia.

Also, US and European tires have 'wear bars', or "Tread Wear Indicators" (TWI) moulded into the grooves of the tire. When these become flush with the tops of the remaining tread, the tire is at the legal limit of normal safety and must be replaced. Certain European countries have stricter limits on tread wear compared to other European countries.

The November 2007 issue of "Consumer Reports" magazine, (page 60), stated that based on tests they conducted; tires should be replaced when the tire tread is down to 1/8 inch. This is about the distance to George Washington's hairline on a US quarter.

Flat

A flat tire

A flat tire occurs when a tire deflates to the point where the metal of the wheel rim comes to ground level. This can occur as a result of normal wear-and-tear, a leak, or more serious damage. A tire which has lost sufficient pressure to cause it to become distorted at the bottom will impair the stability of the vehicle and may damage the tire further if it is driven in this condition. The tire should be changed and/or repaired before it becomes completely flat. Continuing to drive a vehicle with a flat tire will damage the tire beyond repair, possibly damage the rim and vehicle, and put the occupants and other vehicles in danger. A flat tire or low-pressure tire should be considered an emergency situation, requiring immediate attention to rectify the problem. (Some tires, known as "run-flat" tires, have either extremely stiff sidewalls or a resilient filler to allow driving a limited distance while flat, usually at reduced speed, without permanent damage or hazard.)

Hydroplaning (or aquaplaning)

Hydroplaning, also known as aquaplaning, is the condition where a layer of water builds up between the tire and road surface. Hydroplaning occurs when the tread pattern cannot channel away enough water at an adequate rate to ensure a dry footprint area. When hydroplaning occurs, the tire effectively "floats" above the road surface on a cushion of water - and loses traction, braking and steering, creating a very unsafe driving condition. When hydroplaning occurs, there is considerably less responsiveness of the steering wheel. The correction of this unsafe condition is to gradually reduce speed, by merely lifting off the accelerator/gas pedal.

Hydroplaning becomes more prevalent with wider tires; it is of virtually no concern to bicycle tires under normal riding conditions.

Dangers of aged tires

Research and tests show that as tires age, they begin to dry out and become potentially dangerous, even if unused. Aged tires may appear to have similar properties to newly manufactured tires, but rubber degrades over time, and once the vehicle is traveling at high speeds (i.e. on a freeway) the tread could peel off, leading to severe loss of control. In tropical climates, such as Singapore, tires degrade sooner than in temperate climates, and more care should be taken in these climates to ensure that tires do not fail.[citation needed] Also, tires on seldom-used trailers are at the greatest risk of age-failure, but some tires are built to withstand idleness, usually with nylon reinforcement.

Many automakers recommend replacing tires after six years, and several tire manufacturers (Bridgestone, Michelin) have called for tires to be removed from service 10 years after the date of manufacture. However, an investigative report by Brian Ross on ABC's 20/20 news magazine found that many major retailers such as Goodyear, Wal-Mart, and Sears were selling tires that had been produced six or more years ago. Currently, no law for aged tires exists in the United States.[32][33]

Scrap tires and environmental issues

Once tires are discarded, they are considered scrap tires. Scrap tires are often re-used for things from bumper car barriers to weights to hold down tarps. Some facilities are permitted to recycle scrap tires through chipping, and processing into new products, or selling the material to licensed power plants for fuel. Some tires may also be retreaded for re-use. One group did "a study to evaluate the possibility of using scrap tires as a crash cushion system. The objective of this study was to evaluate the material properties of used tires and recycled tire-derived materials (TDMs) for use in low-cost, reusable crash cushions".[34]

Americans generate about 285 million scrap tires per year [35]. Many states have regulations as to the number of scrap tires that you may have on site, due to concerns with dumping, fire hazards, and mosquitoes. In the past, millions of tires have been discarded into open fields. This creates a breeding ground for mosquitoes, since the tires often hold water inside and remain warm enough for mosquito breeding. Mosquitoes create a nuisance and may increase the likelihood of spreading disease. It also creates a fire danger, since such a large tire pile is a lot of fuel. Some tire fires have burned for months, since water does not adequately penetrate or cool the burning tires. Tires have been known to liquefy, releasing hydrocarbons and other contaminants to the ground and even ground water, under extreme heat and temperatures from a fire. The black smoke from a tire fire causes air pollution and is a hazard to down wind properties.

The use of scrap tire chips for landscaping has become controversial, due to the leaching of metals and other contaminants from the tire pieces. Zinc is concentrated (up to 2% by weight) to levels high enough to be highly toxic to aquatic life and plants.[36] Of particular concern is evidence that some of the compounds that leach from tires into water, contain hormone disruptors and cause liver lesions.[37]

Asymmetric tire

An asymmetric tire is a term used to describe some specific stabilization methods used in cars.

Tire tread

An asymmetric tire may refer to a tire whose tread pattern does not form in line symmetry or point symmetry vis-à-vis its central line. Since the tread pattern of many ordinary tires do not form symmetry in relation to design or pattern noise, the method of mounting tires is specially prescribed. This type of tires is used in many cases to promote tire performance, braking performance, and turning performance, since tread contact changes according to the change in alignment during travel.

Stabilizing belts

An asymmetric tire may refer to a passenger car radial tire in which asymmetric structure stabilizing belts are built. Generally the stabilizing belts give a self-aligning torque when a motor vehicle is running straight ahead as well as when it is cornering. However, the sidewalls of the radial tire are so flexible that there will be a delay in the lateral reaction between the tread of the tire and the rim of its wheel as the vehicle is being steered positively. The lateral force will be transmitted from the front wheel to the rear of the vehicle which will tend to be steered off course. Whereas the asymmetric belts bring a gradual change in the lateral displacement of the tire tread corresponding to the rim while the cornering load grows. The progressive change will harden the sidewalls to produce an immediate response to steering which results in safer driving.

See also

References

  1. ^ a b c d Fowler, H. W.; David Crystal (ed.) (2009). A Dictionary of Modern English Usage: The Classic First Edition. Oxford; New York: Oxford University Press. p. 655. ISBN 0199535345. http://books.google.com/books?id=Vr7muDFR6j4C. 
  2. ^ a b Chisholm (ed.), Hugh (1911). Encyclopedia Britannica, vol. 26. Cambridge, England; New York: Encyclopaedia Britannica. p. 1007. http://books.google.com/books?id=dXIYAQAAIAAJ. 
  3. ^ Peters, Pam (2004). The Cambridge Guide to English Usage. Cambridge University Press. pp. 553. ISBN 0-521-62181-X. 
  4. ^ Dunlop, John Boyd (2008). Hutchinson Dictionary of Scientific Biography. AccessScience,. http://www.accessscience.com. Retrieved MCTC Library 9 July 2009.. 
  5. ^ a b c d e f g h i Csere, Csaba (January 1988), "10 Best Engineering Breakthroughs", Car and Driver 33 (7) , p. 60.
  6. ^ Schultz, Mort (June 1985). "Tires - A Century of Progress". Popular Mechanics 162 (6): 62. http://books.google.com/books?id=y-QDAAAAMBAJ&pg=PA60&dq=patent+for+tubeless+tire&ei=Z8CTS73UDIPkzASfzPi2CA&client=safari&cd=10#v=onepage&q=patent%20for%20tubeless%20tire&f=false. Retrieved 2010-03-07. 
  7. ^ Great Trucks
  8. ^ "B.F. Goodrich Co. announces development of tubeless tire". History.com by A&E Television Networks. undated. http://www.history.com/this-day-in-history/bf-goodrich-co-announces-development-of-tubeless-tire. Retrieved 2010-03-07. 
  9. ^ KwikFit. "Changing tyres". http://www.kwik-fit.com/changing-tyres.asp. Retrieved 2008-09-25. 
  10. ^ Bias vs Radial Tires
  11. ^ Jones, Thomas H. (1980). "Get things moving with casters, glides, and wheels". Popular Science 216 (5): 148. ISSN 0161-7370. 
  12. ^ Thomas Net sources for industrial use "Semi-Pneumatic Wheels"
  13. ^ "Car Talk Service Advice: Tire Pressure". http://cars.cartalk.com/content/advice/tirepressure.html. Retrieved 2009-01-16. 
  14. ^ "FEA Chapter III: TIRE PRESSURE SURVEY AND TEST RESULTS". http://www.nhtsa.dot.gov/Cars/rules/rulings/TirePresFinal/FEA/TPMS3.html. Retrieved 2009-01-16. 
  15. ^ "Uncaptioned picture posted on the ecomodder forum". http://ecomodder.com/forum/member-vtec-e-albums-ollies-vtec-e-civic-picture11-105-000km-50psi-yeah-massive-bulge-middle.jpg. Retrieved 2009-01-16. 
  16. ^ "NHTSA test". http://www.nhtsa.dot.gov/Cars/rules/rulings/TirePresFinal/FEA/TPMS3.html. Retrieved 2009-01-16. 
  17. ^ "Understanding Retreading" by the International Tire & Rubber Association, retrieved on 2008-05-24.
  18. ^ "Comprehensive Procurement Guidelines - Retread Tires" U.S. Environmental Protection Agency, updated on May 2, 2008. Retrieved on 2008-05-24.
  19. ^ Brodsky, Harvey. "Federal Government Endorses the Use of Retreaded Tires" Tire Retread Information Bureau, undated, retrieved on 2008-05-24.
  20. ^ Brown, Sheldon. "Sheldon Brown on tires.". http://www.sheldonbrown.com/tires.html. Retrieved 2008-07-01. 
  21. ^ Yokohama
  22. ^ SAE. "TKPH application". http://www.sae.org/technical/standards/J1098_199505. Retrieved October 7, 2007. 
  23. ^ Bridgestone. "How to use TKPH". http://www.firestone.co.za/content.asp?id=186. Retrieved October 7, 2007. 
  24. ^ Goodyear. "New temperature prediction model improves on current TKPH formula". http://www.goodyear.com/media/pr/pr_2000/22169oh.html. Retrieved October 7, 2007. 
  25. ^ Markus, Frank. "Racing Fast 'n' Cheap: Ice Racing". Motor Trend. http://www.motortrend.com/features/112_0407_ice_racing/index.html. Retrieved 2008-09-30. 
  26. ^ My Kingdom for a Tire, Business Week, April 21, 2008, pp. 46-48
  27. ^ My Kingdom for a Tire, Business Week, April 21, 2008, p. 48
  28. ^ Federal Aviation Administration, Use of Nitrogen or Other Inert Gas for Tire Inflation in Lieu of Air
  29. ^ C.Michael Hogan, Analysis of highway noise, Journal of Water, Air, & Soil Pollution, Volume 2, Number 3, Biomedical and Life Sciences and Earth and Environmental Science Issue, Pages 387-392, September, 1973, Springer Verlag, Netherlands ISSN 0049-6979
  30. ^ Lecomte, C (2009). Validation of a Belt Model for Prediction of Hub Forces from a Rolling Tire. Tire Science & Technology 37.2. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=TSTCAU000037000002000062000001&idtype=cvips&gifs=Yes. Retrieved 01 July 2009. 
  31. ^ ETRTO Standards Manual 2007. ETRTO, Bruxelles, Belgium. 2007. pp. I. 
  32. ^ ABC News: Aged Tires Sold as 'New' by Big Retailers
  33. ^ ABC News
  34. ^ Hossain, Nabors, Mustaque, Daniel ((Jan-Feb 2005):36(9)). Testing and evaluation of used automobile tires and recycled tire-derived materials for low-cost crash cushions.. Journal of Materials in Civil Engineering 17.1 General Science Collection. http://find.galegroup.com.mctproxy.mnpals.net/itx/start.do?proid=SPJ.SP04. Retrieved MCTC 8 July 2009. 
  35. ^ "U.S. Environmental Protection Agency". http://www.epa.gov/waste/conserve/materials/tires/tdf.htm. Retrieved 2009-06-01. 
  36. ^ Sullivan, Joseph P. (2006). "An Assessment of Environmental Toxicity and Potential Contamination from Artificial Turf using Shredded or Crumb Rubber" (PDF). http://www.ardeacon.com/pdf/Assessment_Environmental_Toxicity_Report.pdf. Retrieved 2009-06-01. 
  37. ^ Chalker-Scott, Linda. "The Myth of Rubberized Landscapes" (PDF). http://www.puyallup.wsu.edu/~Linda%20Chalker-Scott/Horticultural%20Myths_files/Myths/Rubber%20mulch.pdf. Retrieved 2009-06-01. 

External links


Travel guide

Up to date as of January 14, 2010

From Wikitravel

Tire (ancient Thira) is a historical town is Western Turkey, near the city of Izmir.

This article is an outline and needs more content. It has a template, but there is not enough information present. Please plunge forward and help it grow!

Study guide

Up to date as of January 14, 2010

From Wikiversity

Crystal Clear app kaddressbook.png
Please help develop this page

This page was created, but so far, little content has been added. Everyone is invited to help expand and create educational content for Wikiversity. If you need help learning how to add content, see the editing tutorial and the MediaWiki syntax reference.

To help you get started with content, we have automatically added references below to other Wikimedia Foundation projects. This will help you find materials such as information, media and quotations on which to base the development of "Tire" as an educational resource. However, please do not simply copy-and-paste large chunks from other projects. You can also use the links in the blue box to help you classify this page by subject, educational level and resource type.

Wikipedia-logo.png Run a search on Tire at Wikipedia.
Commons-logo.svg Search Wikimedia Commons for images, sounds and other media related to: Tire
Wikimedia-logo.svg Search for Tire on the following projects:
Smiley green alien whatface.svg Lost on Wikiversity? Please help by choosing project boxes to classify this resource by:
  • subject
  • educational level
  • resource type

Resources

See also


1911 encyclopedia

Up to date as of January 14, 2010

From LoveToKnow 1911

TIRE, an homonymous word, of which the meanings are (1) to weary out, (2) to adorn, or, as a substantive, a head-dress, (3) the outer rim of a wheel. " Tire " in sense (1) is from the Old English teorian, to weary, transitive and intransitive. Ultimately this word is connected with" tear," to rend, the stages of meaning being to rend apart, to wear out, to be or make exhausted.

In sense (2) the word is a shortened form of " attire," dress, equipment; this is from the Old French atirer, to put in order, tire, a row, hence the word now spelled in English tier, but earlier found as tire or tyre. " Tire " (3) is somewhat obscure etymologically. It may be connected with " attire," especially with reference to a similarity to the band of a woman's headdress, or it may be a corruption of " tie-r," meaning that which " ties " or fastens together, though this is rejected by Skeat. The spelling " tyre " is not now accepted by the best English authorities, and is unrecognized in America.

The tire of a wheel is the outer circumferential portion that rolls on the ground or the track prepared for it. When the track is smooth and level, as in a railway, the principal functions of the tire are to provide a hard, durable surface for the wheel, and to reduce to a minimum the resistance to rolling. Railway vehicle wheels usually have hard steel tires, this combination with the hard steel rail giving the maximum endurance and the minimum rolling resistance. For road vehicles also, in which durability is the prime consideration, the tires are usually rings of iron or steel shrunk on the wooden wheels.

In bicycles, motor-cars, and other road vehicles in which freedom from vibration and shock from uneven road surface is desired, rubber or pneumatic tires are employed. These elastic tires are capable of absorbing small irregularities in the road surface without transmitting much vibration to the frame of the vehicle. Their range of yield is, however, too limited to absorb the larger irregularities met with on rough roads, so that their use does not obviate the necessity of spring support of the carriage body on the wheel axles. The pneumatic tire has a very much smaller rolling resistance than a solid rubber tire. Where the driving power is limited, as in bicycles, this consideration is by far the most important. A pneumatic tired bicycle requires less power to drive it at a given speed than does one with solid rubber tires - in popular language, it is much faster; hence pneumatic tires are now almost universally used on bicycles.

Table of contents

Rolling Resistance

Professor Osborne Reynolds, in his investi gations on the nature of rolling resistance, found that it is due to actual sliding of the surfaces in contact. Fig. I shows an iron roller C f resting on a flat, thick sheet of india-rubber. A series of equidis tant parallel lines drawn on the india-rubber are distorted by the FIG. I. pressure, as shown in the figure.

The distance between the marks on the periphery of the roller corresponds to that between the lines on the undistorted sheet of rubber. The motion of the roller being from left to right, actual contact takes place between C and D. The surface of the rubber is depressed at P, is bulged up in front at D, and behind at C. The vertical compression of the rubber at P causes it to bulge laterally, this causing a lateral contraction at D, which in turn causes a vertical extension at D. There is thus created a tendency to relative creeping motion between the roller and rubber. Between f and e there is no relative sliding, but over the portions eD and Cf there is slipping, with a consequent expenditure of energy. The action causes the actual distance traversed by the roller to be different from the geometric distance calculated from the diameter and number of revolutions of the roller. A certain amount of energy is expended in distorting the rubber between P and D; part of this energy is restored as the rear portion of the roller passes over this and the rubber gets back to its original unstrained state.

With a solid rubber tire rolling on a hard, smooth surface the action is similar. Fig. 2 shows a portion of the tire flattened out: vs pi and p2 are the intensities of the pressures at points a i and a 2 at equal distances in front of and behind c, the geometrical point of contact: p i opposes, p 2 assists the P d P, rolling of the wheel. At usual.

speeds the opposing force, pi, will FIG. 2. be greater than the force of resti tution, p 21 the difference being a measure of the elastic hysteresis of the material, H, at that speed. If the vertical compression cd of the tire be denoted by y, the energy lost may be said to be proportional to Hy. Comparing three tires of steel, solid rubber and air respectively rolling on a smooth, hard surface, H is probably smallest for steel and largest for rubber, y is least for steel, greater for a pneumatic tire pumped hard, greater still for solid rubber and for a pneumatic tire insufficiently inflated. The rolling resistance of the steel tire will therefore be least; next in order come the pneumatic tire inflated hard, and the pneumatic tire inflated soft, while the solid rubber tire has the greatest resistance.

Pneumatic Tires. Weight Supported

Let a pneumatic tire inflated to p lb per square inch support a load W lb. The portion q FIG. 3.

near the ground is flattened (fig. 3). If the tire fabric is assumed to be perfectly flexible, then, since the part in contact with the ground is quite flat, the pressure p and q on the opposite sides must be equal; that is, the tire presses on the ground with an intensity p lb per square inch. The area of the flattened portion FIG. 4.

is therefore W/p. Fig. 4 shows the shapes of the areas of contact of a bicycle tire 28 in. by I z in., for various amounts of vertical flattening, the figures annexed to the curves in plan and to the corresponding lines in elevation indicating the amount of vertical flattening in sixteenth parts of an inch. Let y be the vertical flattening, a the semi-major axis, and b the semi-minor axis of the curve of contact. For small values of y, corresponding to a tire pumped hard, the curves of contact may be considered plane sections of a circular ring. The area of the curve may be taken equal to that of an ellipse having the same axes, i.e. 7rab. But a= R 2 - (R - y) 2 =-12Ry - y 2 = y 1,12R - y, and b= AIr2 - (r_y)2= J 112r - y, R and r being the principal radii of section of the tire longitudinally and transversely. Therefore, approximately, A =7rab =7ry V2R - yJ2r - y. For small values of y, y may be neglected in comparison with 2R and zr respectively, and the above equation becomes A =27ry ,/Rr Dd, and therefore W = 27rypAIRr =7rypiiDd. For larger values of y, A is smaller than that given by the above formula, as shown in fig. 5, which gives the areas of contact plotted with respect to the vertical flattenings for a tire 28 in. by I I in. The same curve may serve to show values of W, thus corresponding to the load-deflection curve of a spring. The - 5 curve clearly shows the small value of the pneumatic tire as a spring device. Thus, when pumped hard, so that the normal load is carried with in. vertical flattening, when the bicycle is travelling quickly, a lump on i ai "1. the road equivalent to s in. further flattening nearly doubles the upward reaction on the FIG. 5. wheel. With the normal load carried with in. vertical flattening the same lump on the road increases the upward reaction by only 23%, the area of contact of the tire being d b c, c; b FIG. 6.

increased from 6.5 to 8 sq. in. The above brief investigation, involving a few approximations, is yet sufficiently accurate to afford a clear idea of the usual conditions of a tire.

Missing image
Tire-2.jpg
Missing image
Tire-3.jpg
Missing image
Tire-4.jpg

Outer Cover

The outer cover has to be strong enough to withstand the air-pressure inside the tire and to transmit the driving or the braking effort from the wheel to the road surface. For the latter purpose, the threads of the fabric are best disposed spirally, as shown in fig. 6. While driving in the direction of the arrow the tension on the fibres cc will be slightly increased, that on fibres dd decreased. The distortion of the fabric due to driving is thus reduced to a minimum. A woven fabric is sometimes used, but one made up of two or more layers of parallel threads embedded in rubber is better. This construction makes the outer cover more flexible, and consequently less energy is wasted in distorting the fabric as the tire rolls on and off the ground, while greater durability is also secured. Fig. 7 shows a plain woven fabric, from which it is seen that each thread takes the form of a sinuous line. As the air-pressure inside the tire is increased the threads tend to become straighter, thus pressing together with a cutting action. The total thickness is greater than that of two layers of parallel threads, while on the latter the threads can be placed closer together. The woven fabric is therefore stiffer, weaker and less durable than that built up of parallel layers. The average 7. tensile stress per inch width, t 1 , on the FIG.

longitudinal section of the cover is given by the formula pd=2t 1; that on the transverse section, t2, by pd = 4 t 2 , being the diameter of the tire in transverse section; consequently the stress on the longitudinal section is twice that on the transverse. With the spiral disposition of the threads, as shown in fig. 6, this inequality of stress in the two principal directions has the effect of tending to enlarge the transverse section of the tire, while at the same time tending to contract the tire on the rim.

Single tube, Double tube and Tubeless Tires

A tire, beside being strong enough to resist the stresses to which it is subjected, must be air-tight. In most tires for cycles and motor-cars an inner tube of india-rubber is made separate from the outer cover. In these doubletube tires the outer cover is more or less easily detachable from the rim. The air under pressure is pumped inside the inner tube, which is supported by the outer cover. In case of puncture of a bicycle tire, the inner tube is repaired by cementing a patch of rubber on the outside of the inner tube, a solution of india-rubber in naphtha or bisulphide of carbon being the cementing agent employed. Motor-car tires are best repaired by vulcanizing, as solution patches usually come loose owing to the heating of the tire. In a single-tube tire, as its name indicates, the outer cover and the air-tight tube are vulcanized together to form a single hollow ring. To repair a simple puncture of a single-tube tire it is not necessary to detach it from the rim. Single-tube tires are not often used now, except for path-racing bicycles. A tubeless tire, such as the " Fleuss " (fig. 8), consists of the outer cover, as used in a double-tube tire, to the inner surface of which an air-tight layer of sheet-rubber has been cemented. A continuous flap projects from one edge of the tire, and when in position on the rim this flap is pressed against the other edge, forming an air-tight seal. A slight moistening of the flap with soft soap tends to remove any imperfection in the tightness of the air seal. The repair of a puncture of a tubeless tire can be very quickly done. Since the inner surface of the airtight layer is accessible, after placing the patch in position the tire can be inflated and the bicycle ridden at once; whereas in the doubletube tire sufficient time must elapse between the patching and the inflation to allow the rubber solution to set.

Attachment of Tires to Rims

A single-tube tire can be cemented directly to the rim. For detachable double-tube tires on bicycles, two methods, the Dunlop-Welch endless wire (fig. 9) and the " beaded edge " (fig. I I), account for by far the greater proportion. In the Dunlop-Welch tire the endless wires are embedded in the two edges of the outer cover respectively, the transverse tension of the fabric being transmitted to them. Each endless wire is formed of three coils, oUNLOP so as to give flexibility to the edge of the cover. The ring formed by each endless FIG. 9. wire is smaller in diameter than the edge of the rim. The middle portion of the rim is deepened, its diameter being less than that of the ring of endless wire. To detach the tire after deflation, one part of the edge of the outer cover is depressed into the bottom of the rim, the opposite part then projects slightly beyond the edge of the rim and is pulled outside; one portion being got outside, the rest easily follows. Fig. 10 shows the nature of the mutual action between outer cover C, rim R, and endless wire W in a Dunlop-Welch tire. The transverse tension T on the outer cover is transmitted to the endless wire W, which is also subjected to the reaction N of the rim. The resultant Q must lie in the plane of the endless wire W, and constitutes a radially outward force acting at all points, which in turn causes a longitudinal pull, P, on the wire. Let d be the diameter of the inner air-tube, D the diameter of the ring formed by the endless wire W, p the air pressure, and 8 the angle FIG. IO. FIG. I I.

between T and Q. Then for each inch length of wire T = pd/2, Q = T/cos 0; while P = QD/2. Combining these results, we get P =pdD/4 cos 0. If 0 =30°, P=o 29pdD, from which the section of wire for a tire of any size can be calculated.

In the " beaded edge " fastening, thickened edges on the outer cover take into corresponding edges formed on the rim, and are securely held therein when the tire is inflated.

Prevention of Punctures

The outside of the tire is covered with a thick layer of rubber, which protects the fabric from injury by contact with the rough road surfaces. In full roadster tires this outer layer of rubber is thinner at the sides than at the tread (the part which actually rolls on the ground), but still completely covers the fabric. In light roadster and racing tires the sides are not covered, and an appreciable gain in speed or ease of driving is due to the greater flexibility of the cover thus obtained. Numerous puncture-proof bands and other devices have been tried with the object of absolutely preventing punctures, or making the tire selfsealing after puncture; but they increase the rolling resistance, and therefore the effort necessary to drive the bicycle at a given speed.

Valve for Pneumatic Tire

A non-return valve is permanently attached to the inner tube of the tire, which allows the air forced from the inflater to pass inside the inner tube. The most commonly used, the Dunlop-Woods valve, consists of a short piece of rubber tubing mounted on a brass stem, which has a small hole communicating from its outer end to the inner surface of the rubber tube. Normally, the tubing closes the mouth of this hole, preventing the air from escaping from the tire, but lifts freely when air is being forced from the inflater. The arrangement of the parts for deflating and for getting access to the rubber tubing is very simple and effective. The cyclist should be careful that the small piece of valve tubing, and the two fibre washers at the ends of the flexible connecter which serve to make air-tight the two joints between the latter and the pump and valve stem respectively, are always in good condition. If either of these seemingly small details is out of order it may be impossible to pump the tires hard enough; the bicycle being ridden, the tires may be nipped in many places between the rim and sharp edges on the road surface, and practically ruined.

Tires for Motor Cars. - In the cost of upkeep of a motor car the tires are the most expensive item. For a slow speed vehicle an ordinary steel tire, shrunk or hydraulically pressed on a wooden wheel, is cheap and durable. At higher speeds over uneven roads it is less satisfactory; the wheel, forming with the tire one rigid body, receives violent accelerations vertically, due to the uneven road, and is being continually shot upwards into the air out of contact with the ground. Thus excessive noise and vibration are caused at all but very moderate speeds, and for passenger cars an elastic tire is a necessity. The solid rubber tire, not being liable to puncture, is trustworthy if made of sufficient sectional area, but it is expensive and lacks the comfort and easy running of the pneumatic. The motor car pneumatic tire is made on the same lines as the cycle tire, but the air-tube is thicker, and the outer cover is built up with FIG. 12.

Missing image
Tire-5.jpg
Missing image
Tire-6.jpg
Missing image
Tire-7.jpg

several layers of canvas or fabric to give the necessary strength (fig. 14). To provide for wear, the outer protective layer of rubber is considerably thickened at the tread, where it is also reinforced with two or three layers of canvas. The Palmer cord tire is built up of two layers of cord (fig. 12) arranged spirally, each cord being composed of four strands of six threads. The cords are flattened FIG. 8.

Missing image
Tire-8.jpg
Missing image
Tire-9.jpg

somewhat, their narrow surfaces being together at the tread of the tire, and their wide ones at the beaded edge. The anchorage of the cord to the beaded edge is obtained by steel pins passing through the loops of the cord and into the canvas beads (fig. 13). The cords, tread and beads being all vulcanized together, the tire is practically impervious to moisture, and has therefore less tendency to rot than a canvas tire. Further, the threads, by the process of manufacture, are insulated each from the others by a layer of rubber, and there is thus less tendency for them to fray or saw each other as the tire yields during continuous running. These features of construction tend to greater durability.

Strains on Fabric of Pneumatic Tire

As each portion of the tread comes in contact with the ground it is flattened, while the rest of the transverse section has its radius of curvature slightly decreased (fig. 3). Thus the transverse section is repeatedly undergoing flexure through a range extending from flatness (radius of curvature infinity) to a radius of curvature slightly less than that of the normal section. On the longitudinal section the range of flexure is from flat to a radius of curvature equal to that of the normal section. The latter range is therefore much less than the former. The necessary thickness of the fabric and rubber to resist the air pressure and punctures involves a certain amount of stiffness; consequently the energy expended in the flexure of the tire is much greater than in a thin cycle tire. This energy appears as heat; the temperature of the cover rises until the heat carried away by the air is equal to that generated by flexure. At very high speeds this heating becomes so great as to have fan injurious action on the rubber and fabric. Unfortunately, the solid rubber tire is worse off in this respect, its elastic hysteresis, and therefore the heating effect, being greater than that of a pneumatic tire. It is evident that increase of the diameter of the tire-section lessens the heating action, while reduction of diameter of the wheel has no effect, so long as the range of longitudinal flexure is less than the transverse. Nearly all tire fabrics are equally stiff longitudinally and transversely; but probably greater durability would be obtained from a fabric more flexible transversely, even if somewhat stiffer longitudinally.

Pneumatic Tires for Heavy Loads

From the formula for load supported, W = iryp-sl Dd, for a given air pressure p and vertical flattening y, the load supported is proportional to the square root of the product of the longitudinal and transverse diameters; thus a tire 36" X4" is equivalent to one 24" X6". But the latter can be subjected to a much greater vertical flattening y than the former, with a less range of flexure of the cover, probably twice the amount. In this event, with the same air pressures, the 24"X6" tire could carry a load twice that of the 36" X4" tire. Or, if both tires carried the same load, the air pressure in the former might be half that in the latter, and, its vertical flattening under normal load being twice as great, its value as a spring in absorbing vertical unevenness of the road would be double. Since the first use of pneumatic tires for motor cars, they have been steadily reduced in diameter, and probably they can be made still smaller with advantage, if the transverse section be proportionately increased.

The following table gives the maximum loads and minimum air pressures for a few sizes of tires, as recommended by the Dunlop Pneumatic Tire Company. The corresponding vertical flattening has been calculated from the formula given above.

Diameter.

Section.

Maximum

Load per

Minimum

Air

Pressure.

Vertical

Flattening.

g'

In.

In.

lb

lb

per sq. in.

In.

Light

28

21

360

70

19

Car

28

3

400

75

19

Tires

28

32

700

80

25

Heavy

' 32

31

900

80

.33

Car

32

4

1000

85

33

Tires

32

5

1300

95

'34

Fastenings of Motor Tires to Rims

The beaded edge " type of fastening is most largely used, supplemented by security bolts (fig. 14). Fig. 13 shows a flange fastening as used for the Palmer cord tire, the two flanges being secured by a number of bolts passing through the rim of the wheel.

Solid Rubber Tires for Heavy Vehicles

Fig. 15 shows a section of a solid rubber tire and rim, the rubber being forced under pressure on the beaded rim. For very heavy loads, as in motor omnibuses, a twin tire gives the best results. The two tires are fastened on the same rim, at a sufficient distance apart to allow each to bulge laterally as it rolls on the ground.

FIG. 14. FIG. 15.

Non-Skid Devices

As a pneumatic tire flattens where it is in contact with the road, under certain conditions of road surface a semi-liquid film of mud gets interposed, and frictional contact is reduced to a minimum. The vehicle has then no lateral constraint, and side-slipping or skidding may occur. On a bicycle this means a dismount, probably a severe fall; on a three or four-wheeled vehicle the steering control is temporarily lost. Cycle tires are usually provided with longitudinal ridges at the tread (figs. 8, 9, I I); the narrow surfaces of the ridges penetrate the mud and get a better grip on the solid road surface. Motor car tires are sometimes left with a smooth tread (fig. 14); fig. 13 shows a non-slipping tread with longitudinal ridges. The Dunlop non-slipping tread is formed by a series of lateral grooves about 2 in. apart all round the tread. Fig. 16 shows a tire fitted with a non-skid leather band, to which hard steel studs are fastened. This type of non-skid band can be either vulcanized to the tire or independently fastened to the rim at the beaded edges. The Parsons " non-skid " device consists of chains crossing the tire at right angles and fitting loosely over its surface; they are fastened at intervals to two chain rings one on each side of the wheel, and can be easily adapted to any tire. (A. SP.)


<< Pierre Emanuel Tirard

Tireh >>


Wiktionary

Up to date as of January 15, 2010
(Redirected to tire article)

Definition from Wiktionary, a free dictionary

Contents

English

Pronunciation

Etymology 1

From Middle English tire (equipment) aphetic form of attire

Alternative spellings

Noun

Singular
tire

Plural
tires

tire (plural tires)

  1. (obsolete) Accoutrements, accessories.
  2. (obsolete) Dress, clothes, attire.
    • 1621, Robert Burton, The Anatomy of Melancholy, New York Review of Books 2001, p. 66:
      men like apes follow the fashions in tires, gestures, actions: if the king laugh, all laugh [...].
  3. Metal rim of a wheel.
  4. (North American) The rubber covering on a wheel.
Usage notes
  • Tire is one of the few words where Canadian usage prefers the US spelling over the British / Commonwealth spelling.
Related terms
Translations

Verb

Infinitive
to tire

Third person singular
tires

Simple past
tired

Past participle
tired

Present participle
tiring

to tire (third-person singular simple present tires, present participle tiring, simple past and past participle tired)

  1. (transitive) To dress or adorn.
Translations
The translations below need to be checked and inserted above into the appropriate translation tables, removing any numbers. Numbers do not necessarily match those in definitions. See instructions at Help:How to check translations.

Etymology 2

From Old English teorian

Verb

Infinitive
to tire

Third person singular
tires

Simple past
tired

Past participle
tired

Present participle
tiring

to tire (third-person singular simple present tires, present participle tiring, simple past and past participle tired)

  1. (intransitive) To become sleepy or weary.
  2. (transitive) To make sleepy or weary.
Synonyms
Related terms
Translations

External links

  • tire in Webster’s Revised Unabridged Dictionary, G. & C. Merriam, 1913
  • tire in The Century Dictionary, The Century Co., New York, 1911

Anagrams


French

Pronunciation

Verb form

tire

  1. First-person singular present indicative of tirer.
  2. Third-person singular present indicative of tirer.
  3. First-person singular present subjunctive of tirer.
  4. Third-person singular present subjunctive of tirer.
  5. Second-person singular imperative of tirer.

Anagrams


Scots

Pronunciation

  • IPA: /ˈtəiər/

Verb

tae tire (third-person singular simple present tires, present participle tirin, simple past tiret, past participle tiret)

Infinitive
tae tire

Third person singular
tires

Simple past
tiret

Past participle
tiret

Present participle
tirin

  1. To tire.

Spanish

Verb

tire (infinitive: tirar)

  1. first-person singular (yo) present subjunctive form of tirar.
  2. formal second-person singular (usted) present subjunctive form of tirar.
  3. third-person singular (él, ella, also used with usted?) present subjunctive form of tirar.
  4. formal second-person singular (usted) imperative form of tirar.

Turkish

Noun

tire

  1. "-" Hyphen-minus symbol, used as a hyphen, minus sign, and a dash.

Simple English

A tire (British tyre) is the part of a wheel which is made of rubber. There are tires on many vehicles, such as cars, airplanes, bicycles, wheelbarrows and other things that need to move around smoothly.

Tires need to be changed after their treads wear away. Driving with worn tires is very dangerous. It can cause the tire to explode and the driver to lose control.

Construction

Tires are made of different types of rubber. Softer rubber is used in summer or when the tires need better traction, for example, in auto racing. Tires made of harder rubber are made for long lasting performance. There are many different types of tires. They come in different sizes and have different tread patterns.

There are many different sizes of tires. They are marked with 3 numbers and might look like: 225/60R16. The first number is the width in millimeters of the tire at the widest point when it is mounted and inflated. The second number is the sidewall (side of the tire) height as a ratio or percentage of the width. The last number is the wheel diameter in inches.

Example

Tire size: 225/60R16

Tire width = 225mm
Sidewall height = 135mm (225 * .60 = 135)
Wheel diameter = 16 inches

Very large tires (for example, tires on big mining trucks) use different units. For example: 59/80R63. The first number is the width in inches of the tire. The second number is the sidewall height as a ratio of the width. The last number is the wheel diameter in inches.

Tire Damage

Most tires today do not have a tube inside of them. There are grooves in the wheel that let the tire be popped into place and hold a lot of air pressure. If there is a crack in the tire, it will not be able to hold its air. Tire leaks are very common. The most common cause is a hole from a nail or screw. This can usually be fixed by patching the inside of the tire so that it can hold air again. If the hole is close to or in the side of the tire, it can not be fixed. This is because the sides of the tire flexes to support the weight of the vehicle. A patch will not be able to handle the stress.








Got something to say? Make a comment.
Your name
Your email address
Message