The Full Wiki

More info on TonB-dependent receptors

TonB-dependent receptors: Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.


From Wikipedia, the free encyclopedia

TonB dependent receptor
1qfg opm.gif
Symbol TonB_dep_Rec
Pfam PF00593
InterPro IPR000531
SCOP 2fcp
TCDB 1.B.14
OPM family 89
OPM protein 1qfg

TonB-dependent receptors is a family of beta-barrel proteins from the outer membrane of Gram-negative bacteria. The TonB complex senses signals from outside the bacterial cell and transmits them via two membranes into the cytoplasm, leading to transcriptional activation of target genes.

In Escherichia coli the TonB protein interacts with outer membrane receptor proteins that carry out high-affinity binding and energy-dependent uptake of specific substrates into the periplasmic space[1]. These substrates are either poorly permeable through the porin channels or are encountered at very low concentrations. In the absence of TonB, these receptors bind their substrates but do not carry out active transport. TonB-dependent regulatory systems consist of six protein protein components [2].

The proteins that are currently known or presumed to interact with TonB include BtuB[3], CirA, FatA, FcuT, FecA[4], FhuA[5], FhuE, FepA[6], FptA, HemR, IrgA, IutA, PfeA, PupA and Tbp1. The TonB protein also interacts with some colicins. Most of these proteins contain a short conserved region at their N-terminus[7].

TonB-dependent receptors include a plug domain which acts as the channel gate, blocking the pore until the channel is bound by ligand. At this point it under goes conformational changes opens the channel.


  1. ^ Kadner RJ, Chimento DP, Wiener MC (2003). "The Escherichia coli outer membrane cobalamin transporter BtuB: structural analysis of calcium and substrate binding, and identification of orthologous transporters by sequence/structure conservation". J. Mol. Biol. 332 (5): 999–1014. doi:10.1016/j.jmb.2003.07.005. PMID 14499604.  
  2. ^ Koebnik R (2005). "TonB-dependent trans-envelope signalling: the exception or the rule?". Trends Microbiol. 13 (8): -. doi:10.1016/j.tim.2005.06.005. PMID 15993072.  
  3. ^ Kadner RJ, Chimento DP, Wi ener MC, Mohanty AK (2003). "Substrate-induced transmembrane signaling in the cobalamin transporter BtuB". Nat. Struct. Biol. 10 (5): 394–401. doi:10.1038/nsb914. PMID 12652322.  
  4. ^ Deisenhofer J, Smith BS, Esser L, Chakraborty R, van der Helm D, Ferguson AD (2002). "Structural basis of gating by the outer membrane transporter FecA". Science 295 (5560): 1715–1719. doi:10.1126/science.1067313. PMID 11872840.  
  5. ^ Moras D, Rosenbusch JP, Mitschler A, Rees B, Locher KP, Koebnik R, Moulinier L (1998). "Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes". Cell 95 (6): 771–778. doi:10.1016/S0092-8674(00)81700-6. PMID 9865695.  
  6. ^ Deisenhofer J, Xia D, Buchanan SK, Smith BS, Venkatramani L, Esser L, Palnitkar M, Chakraborty R, van der Helm D (1999). "Crystal structure of the outer membrane active transporter FepA from Escherichia coli". Nat. Struct. Biol. 6 (1): 56–63. doi:10.1038/4931. PMID 9886293.  
  7. ^ Klebba PE (2003). "Three paradoxes of ferric enterobactin uptake". Front. Biosci. 8: -. doi:10.2741/1233. PMID 12957833.  


Got something to say? Make a comment.
Your name
Your email address