The Full Wiki

Turion 64 X2: Wikis

Advertisements

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Encyclopedia

(Redirected to AMD Turion article)

From Wikipedia, the free encyclopedia

AMD Turion is the brand name AMD applies to its 64-bit low-power consumption (mobile) processors codenamed K8L.[1] The Turion 64 and Turion 64 X2/Ultra processors compete with Intel's mobile processors, initially the Pentium M and currently the Intel Core and Intel Core 2 processors.

Contents

Features

Earlier Turion 64 processors are compatible with AMD's Socket 754. The newer "Richmond" models are designed for AMD's Socket S1. They are equipped with 512 or 1024 KiB of L2 cache, a 64-bit single channel on-die memory controller, and an 800 MHz HyperTransport bus. Battery saving features, like PowerNow!, are central to the marketing and usefulness of these CPUs.

AMD Turion processor family
Laptop
Code-named Core Date released
Lancaster
Richmond
Sable
solo (90nm)
solo (90nm)
solo (65nm)
Mar 2005
Sep 2006
Jun 2008
Taylor
Trinidad
Tyler
Lion
dual (90nm)
dual (90nm)
dual (65nm)
dual (65nm)
May 2006
May 2006
May 2007
Jun 2008
Lion dual (65nm) Jun 2008
Caspian dual (45nm) Sep 2009
List of AMD Turion microprocessors
Advertisements

Turion 64 X2

AMD Turion 64 X2 Engineering Sample, 1.6 GHz.

Turion 64 X2 is AMD's 64-bit dual-core mobile CPU, intended to compete with Intel's Core and Core 2 CPUs. The Turion 64 X2 was launched on May 17, 2006[2], after several delays. These processors use Socket S1, and feature DDR2 memory. They also include AMD Virtualization Technology and more power-saving features.

AMD first produced the Turion 64 X2 on IBM's 90 nm Silicon on insulator (SOI) process (cores with the Taylor codename). As of May 2007, they have switched to a 65 nm Silicon-Germanium stressed process, which was recently achieved through the combined effort of IBM and AMD, with 40% improvement over comparable 65 nm processes. The earlier 90 nm devices were codenamed Taylor and Trinidad, while the newer 65 nm cores have codename Tyler.

Turion 64 X2 Ultra

Turion Ultra logo.png

Turion 64 X2 Ultra (codenamed Griffin) is the first processor family from AMD solely for the mobile platform, based on the Athlon 64 (K8 Revision G) architecture with some specific architectural enhancements similar to current Phenom processors aimed at lower power consumption and longer battery life. The Turion Ultra processor was released as part of the "Puma" mobile platform in June 2008.

The Turion Ultra is a dual-core processor to be fabricated on 65 nm technology using 300 mm SOI wafers. It will support DDR2-800 SO-DIMMs and features a DRAM prefetcher to improve performance and a mobile-enhanced northbridge (memory controller, HyperTransport controller, and crossbar switch). Each processor core comes with 1 MiB L2 cache for a total of 2 MiB L2 cache for the entire processor. This is double the L2 cache found on the current Turion 64 X2 processor. Clock rates range from 2.0 GHz to 2.4 GHz, and thermal design power (TDP) will range from 32 watts to 35 watts.[3]

A new feature of the Turion Ultra processor is that it implements three voltage planes: one for the northbridge and one for each core.[4] This, along with multiple phase-locked loops (PLL), allows one core to alter its voltage and operating frequency independently of the other core, and independently of the northbridge. Indeed, in a matter of microseconds, the processor can switch to one of 8 frequency levels and one of 5 voltage levels. By adjusting frequency and voltage during use, the processor can adapt to different workloads and help reduce power consumption. It can operate as low as 250 MHz to conserve power during light use.

Additionally, the processor features deep sleep state C3, deeper sleep state C4 (AltVID), and HyperTransport 3.0 up to 2.6 GHz, or up to 41.6 GB/s bandwidth per link at 16-bit link width and dynamic scaling of HT link width down to 0-bit ("disconnected") in both directions from and to the chipset for four different usage scenarios [5]. It also implements multiple on-die thermal sensors through integrated SMBUS (SB-TSI) interface (replaces and eliminates the thermal monitor circuit chip through SMBUS in its predecessors) with additional MEMHOT signal sent from embedded controller to the processor, and reduces memory temperature.

The Turion Ultra processor will share the same socket S1 as its predecessor (Turion 64 X2) but will not have the same pinout.[6] It is designed to work with the RS780M chipset.

Given the above enhancements on the architecture, the cores were minimally modified and are based on the K8 instead of the K10 microarchitecture.[6] AMD Fellow Maurice Steinman has said the cores are almost transistor-for-transistor identical to those found in the 65 nm Turion 64 X2 processors. This makes it more likely that Turion Ultra will avoid the clock rate scaling difficulties present in AMD's K10 products.

Turion II Ultra

Turion II Ultra (codenamed Caspian) is the mobile version of the K10.5 architecture, also known by its desktop variant Regor. It is a dual core processor, and features clock speeds of 2.4GHz to 2.6GHz, 2 MB total L2 cache (1 MB per core), HyperTransport at 3.6 GT/s, and a 128 bit FPU. It maintains a TDP of 35W from its predecessor Turion X2 Ultra (codenamed Griffin).

Turion II

Turion II is identical to Turion II Ultra, except that the Turion II features only 1MB of L2 cache (512KB per core), and lower clock speeds ranging from 2.2GHz to 2.3GHz.

Model naming methodology

The model naming scheme does not make it obvious how to compare one Turion with another, or even an Athlon 64. The model name is two letters, a dash, and a two digit number (for example, ML-34). The two letters together designate a processor class, while the number represents a performance rating (PR). The first letter is M for single core processors and T for dual core Turion 64 X2 processors. The later in the alphabet that the second letter appears, the more the model has been designed for mobility (frugal power consumption). Take for instance, an MT-30 and an ML-34. Since the T in the MT-30 is later in the alphabet than the L in ML-34, the MT-30 consumes less power than the ML-34. But since 34 is greater than 30, the ML-34 is faster than the MT-30.

The release of the Turion II Ultra and Turion II lineups have simplified name methodology; all newly released Turions have the letter "M" followed by a number designating relative performance. The higher the number, the higher the clock speed. For example, the Turion II M500 has a clock speed of 2.2GHz while the Turion II M520 has a clock speed of 2.3GHz.

Cores

Lancaster (90 nm SOI)

model MT-34 (top)
model MT-34 (bottom)
  • Stepping E5
  • L1 cache: 64 + 64 KiB (data + instructions)
  • L2 cache: 512 or 1024 KiB, fullspeed
  • MMX, Enhanced 3DNow!, SSE, SSE2, SSE3, AMD64, PowerNow!, NX Bit
  • Socket 754, HyperTransport (800 MHz, HT800)
  • VCore: 1.00 V - 1.45 V
  • Power consumption (TDP): 25/35 watt max
  • First release: March 10, 2005
  • Clock rate: 1600, 1800, 2000, 2200, 2400 MHz
    • 25W TDP:
      • MT-28: 1600 MHz (512 KiB L2-Cache)
      • MT-30: 1600 MHz (1024 KiB L2-Cache)
      • MT-32: 1800 MHz (512 KiB L2-Cache)
      • MT-34: 1800 MHz (1024 KiB L2-Cache)
      • MT-37: 2000 MHz (1024 KiB L2-Cache)
      • MT-40: 2200 MHz (1024 KiB L2-Cache)
    • 35W TDP:
      • ML-28: 1600 MHz (512 KiB L2-Cache)
      • ML-30: 1600 MHz (1024 KiB L2-Cache)
      • ML-32: 1800 MHz (512 KiB L2-Cache)
      • ML-34: 1800 MHz (1024 KiB L2-Cache)
      • ML-37: 2000 MHz (1024 KiB L2-Cache)
      • ML-40: 2200 MHz (1024 KiB L2-Cache)
      • ML-42: 2400 MHz (512 KiB L2-Cache)
      • ML-44: 2400 MHz (1024 KiB L2-Cache)

Richmond (90 nm SOI)

The models support the same features available in Lancaster, plus AMD-V.

Taylor & Trinidad (90 nm SOI)

Turion64-X2 for Socket S1
  • Dual AMD64 core
  • Stepping F2
  • L1 cache: 64 + 64 KiB (data + instructions) per core
  • L2 cache: 256 KiB (Taylor) or 512 KiB (Trinidad) per core, fullspeed
  • Memory controller: dual channel DDR2-667 MHz
  • MMX, Extended 3DNow!, SSE, SSE2, SSE3, AMD64, PowerNow!, NX bit
  • Socket S1, HyperTransport (800 MHz, 1600 MT/s, 10.7 GB/s CPU-RAM + 6.4 GB/s CPU-I/O transfer rate)[1]
  • Power consumption (TDP): 31, 33, 35 watt max
  • First release: May 17, 2006
  • Clock rate: 1600, 1800, 2000, 2200 MHz
    • 31W TDP:
      • TL-50: 1600 MHz (256 KiB L2-Cache per core)
      • TL-52: 1600 MHz (512 KiB L2-Cache per core)
    • 33W TDP:
      • TL-56: 1800 MHz (512 KiB L2-Cache per core)
    • 35W TDP:
      • TL-60: 2000 MHz (512 KiB L2-Cache per core)
      • TL-64: 2200 MHz (512 KiB L2-Cache per core)

Tyler (65 nm SOI)

  • Dual AMD64 core
  • Steppings G1, G2
  • L1 cache: 64 + 64 KiB (data + instructions) per core
  • L2 cache: 512 KiB per core, fullspeed
  • Memory controller: dual channel DDR2-800 MHz (12.8 GB/s full-duplex CPU/RAM bandwidth)
  • 100 MHz granularity (Dynamic P-state Transitions)
  • MMX, Extended 3DNow!, SSE, SSE2, SSE3, AMD64, PowerNow!, NX Bit
  • Socket S1, HyperTransport (800 MHz / 1600 MT/s)
  • Power consumption (TDP): 31, 35 watt max.
  • First release: 2007
  • Clock rate: 1700, 1800, 1900, 2000, 2200, 2300, 2400 MHz
    • 31W TDP:
      • TK-53 1700 MHz (256 KiB L2-Cache per core) - ※Athlon 64 X2 Dual-Core for Notebooks
      • TK-55 1800 MHz (256 KiB L2-Cache per core) - ※Athlon 64 X2 Dual-Core for Notebooks
      • TL-56 1800 MHz (512 KiB L2-Cache per core)
      • TK-57 1900 MHz (256 KiB L2-Cache per core) - ※Athlon 64 X2 Dual-Core for Notebooks
      • TL-58 1900 MHz (512 KiB L2-Cache per core)
      • TL-60 2000 MHz (512 KiB L2-Cache per core)
    • 35W TDP:
      • TL-62 2100 MHz (512 KiB L2-Cache per core)
      • TL-64 2200 MHz (512 KiB L2-Cache per core)
      • TL-66 2300 MHz (512 KiB L2-Cache per core)
      • TL-68 2400 MHz (512 KiB L2-Cache per core)

Lion (65 nm SOI)

  • Dual AMD64 core
  • B1 Stepping
  • L1 cache: 64 + 64 KiB (data + instructions) per core
    • L2 cache: 512 KiB per core, fullspeed, or
    • L2 cache: 1 MiB per core, fullspeed
  • Memory controller: dual channel DDR2-800 MHz
  • MMX, Extended 3DNow!, SSE, SSE2, SSE3, AMD64, PowerNow!, NX bit, AMD-V
  • Socket S1
  • HyperTransport (1800 MHz, 3600 MT/s, 12.8 GB/s CPU-RAM + 14.4 GB/s CPU-I/O transfer rate)
  • HyperTransport (2200 MHz, 4400 MT/s on ZM-85 only)
  • Power consumption (TDP): 32, 35 watt max
  • First release: June 4, 2008
    • Clock rate: 2000, 2100, 2200 MHz (RM-7x, L2 cache: 1 MiB)
    • Clock rate: 2100, 2200, 2300, 2400 MHz (ZM-8x, L2 cache: 2 MiB)
    • 31W TDP:
      • RM-70: 2000 MHz
    • 32W TDP:
      • ZM-80: 2100 MHz
    • 35W TDP:
      • RM-72: 2100 MHz
      • RM-74: 2200 MHz
      • ZM-82: 2200 MHz
      • ZM-84: 2300 MHz
      • ZM-85: 2300 MHz
      • ZM-86: 2400 MHz

Caspian (45 nm SOI)

  • Dual Stars core
    • L2 cache: 512 KiB per core, fullspeed (For Turion II, Athlon II and Sempron II), or
    • L2 cache: 1 MiB per core, fullspeed (For Turion II Ultra)
  • Memory controller: dual channel DDR2-800 MHz
  • MMX, Extended 3DNow!, SSE, SSE2, SSE3, SSE4a, AMD64, PowerNow!, NX bit, AMD-V
  • Socket S1G3
  • HyperTransport (1800 MHz, 3600 MT/s on M6xx/M5xx models, 1600MHz, 3200 MT/s for M3xx models)
  • Power consumption (TDP): 35 watt max
    • Clock rate: 2000 (M1xx, L2 cache 512 KiB)
    • Clock rate: 2000, 2100, 2200 MHz (M3xx, L2 cache: 1 MiB)
    • Clock rate: 2200, 2300, 2400 MHz (M5xx, L2 cache: 1 MiB)
    • Clock rate: 2400, 2500, 2600, 2700 MHz (M6xx, L2 cache: 2 MiB)
    • 25W TDP:
      • M100: 2000 MHz - Sempron II Single-Core
    • 35W TDP:
      • M300: 2000 MHz – Athlon II Dual-Core
      • M320: 2100 MHz – Athlon II Dual-Core
      • M340: 2200 MHz - Athlon II Dual-Core
      • M500: 2200 MHz – Turion II Dual-Core
      • M520: 2300 MHz – Turion II Dual-Core
      • M540: 2400 MHz - Turion II Dual-Core
      • M600: 2400 MHz – Turion II Ultra Dual-Core
      • M620: 2500 MHz – Turion II Ultra Dual-Core
      • M640: 2600 MHz – Turion II Ultra Dual-Core
      • M660: 2700 MHz - Turion II Ultra Dual-Core

See also

References

External links


Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message