The Full Wiki

Virtual particle: Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.


From Wikipedia, the free encyclopedia

In physics, a virtual particle is a particle that exists for a limited time and space, introducing uncertainty in their energy and momentum due to the uncertainty principle. Because energy and momentum in quantum mechanics are time and space derivative operators, then due to Fourier transforms their spans are inversely proportional to time duration and position spans, respectively.

Virtual particles exhibit some of the phenomena that real particles do, such as obedience to the conservation laws. If a single particle is detected, then the consequences of its existence are prolonged to such a degree that it cannot be virtual. Virtual particles are viewed as the quanta that describe fields of the basic force interactions, which cannot be described in terms of real particles. Examples of these are static force fields, such as a simple electric or magnetic field, or any field that exists without excitations that result in its carrying information from place to place.

Virtual particles should not be confused with antiparticles.



The concept of virtual particles necessarily arises in the perturbation theory of quantum field theory, where interactions (essentially forces) between real particles are described in terms of exchanges of virtual particles. Any process involving virtual particles admits a schematic representation known as a Feynman diagram which facilitates the understanding of calculations.

A virtual particle is one that does not precisely obey the m2c4 = E2p2c2 [1] relationship for a short time. In other words, their kinetic energy may not have the usual relationship to velocity — indeed, it can be negative. The probability amplitude for them to exist tends to be canceled out by destructive interference over longer distances and times. They can be considered a manifestation of quantum tunnelling. The range of forces carried by virtual particles is limited by the uncertainty principle, which regards energy and time as conjugate variables; thus virtual particles of larger mass have more limited range.

There is not a definite line differentiating virtual particles from real particles — the equations of physics just describe particles (which includes both equally). The amplitude that a virtual particle exists interferes with the amplitude for its non-existence; whereas for a real particle the cases of existence and non-existence cease to be coherent with each other and do not interfere any more. In the quantum field theory view, "real particles" are viewed as being detectable excitations of underlying quantum fields. As such, virtual particles are also excitations of the underlying fields, but are detectable only as forces but not particles. They are "temporary" in the sense that they appear in calculations, but are not detected as single particles. Thus, in mathematical terms, they never appear as indices to the scattering matrix, which is to say, they never appear as the observable inputs and outputs of the physical process being modelled. In this sense, virtual particles are an artifact of perturbation theory, and do not appear in a non-perturbative treatment.

There are two principal ways in which the notion of virtual particles appears in modern physics. They appear as intermediate terms in Feynman diagrams; that is, as terms in a perturbative calculation. They also appear as an infinite set of states to be summed or integrated over in the calculation of a semi-non-perturbative effect. In the latter case, it is sometimes said that virtual particles cause the effect, or that the effect occurs because of the existence of virtual particles.[citation needed]


There are many observable physical phenomena resulting from interactions involving virtual particles. For bosonic particles which exhibit rest mass when they are free and "real," virtual interactions are characterized by the relatively short range of the force interaction produced by particle exchange. Examples of such short-range interactions are the strong and weak forces, and their associated field bosons. For the gravitational and electromagnetic forces, the zero rest-mass of the associated boson particle permits long-range forces to be mediated by virtual particles. However, in the case of photons, power and information transfer by virtual particles is a relatively short-range phenomenon (existing importantly only within a few wavelengths of the field-disturbance which carries information or transferred power), as for example seen in the characteristically short range of inductive and capacitative effects in the near field zone of coils and antennas.

Some field interactions which may be seen in terms of virtual particles are:

  • The Coulomb force (static electric force) between electric charges. It is caused by the exchange of virtual photons. In symmetric 3-dimensional space this exchange results in the inverse square law for electric force. Since the photon has no mass, the coulomb potential has an infinite range.
  • The magnetic field between magnetic dipoles. It is caused by the exchange of virtual photons. In symmetric 3-dimensional space this exchange results in the inverse square law for magnetic force. Since the photon has no mass, the magnetic potential has an infinite range.
  • The so-called near field of radio antennas, where the magnetic and electric effects of the changing current in the antenna wire and the charge effects of the wire's capacitive charge are detectable, but both of which effects decay with increasing distance from the antenna much more quickly than do the influence of conventional electromagnetic waves, for which E is always equal to cB, and which are composed of real photons.
  • The strong nuclear force between quarks is the result of interaction of virtual gluons. The residual of this force outside of quark triplets (neutron and proton) holds neutrons and protons together in nuclei, and is due to virtual mesons such as the pi meson and rho meson.
  • The weak nuclear force - it is the result of exchange by virtual W bosons.
  • The spontaneous emission of a photon during the decay of an excited atom or excited nucleus; such a decay is prohibited by ordinary quantum mechanics and requires the quantization of the electromagnetic field for its explanation.
  • The Casimir effect, where the ground state of the quantized electromagnetic field causes attraction between a pair of electrically neutral metal plates.
  • The van der Waals force, which is partly due to the Casimir effect between two atoms,
  • Vacuum polarization, which involves pair production or the decay of the vacuum, which is the spontaneous production of particle-antiparticle pairs (such as electron-positron).
  • Lamb shift of positions of atomic levels.
  • Hawking radiation, where the gravitational field is so strong that it causes the spontaneous production of photon pairs (with black body energy distribution) and even of particle pairs.

Most of these have analogous effects in solid-state physics; indeed, one can often gain a better intuitive understanding by examining these cases. In semiconductors, the roles of electrons, positrons and photons in field theory are replaced by electrons in the conduction band, holes in the valence band, and phonons or vibrations of the crystal lattice. A virtual particle is in a virtual state where the probability amplitude is not conserved.


Paul Dirac was the first to propose that empty space (a vacuum) can be visualized as consisting of a sea of virtual electron-positron pairs, known as the Dirac sea. The Dirac sea has a direct analog to the electronic band structure in crystalline solids as described in solid state physics. Here, particles correspond to conduction electrons, and antiparticles to holes. A variety of interesting phenomena can be attributed to this structure.

Virtual particles in Feynman diagrams

One particle exchange scattering diagram

The calculation of scattering amplitudes in theoretical particle physics requires the use of some rather large and complicated integrals over a large number of variables. These integrals do, however, have a regular structure, and may be represented as Feynman diagrams. The appeal of the Feynman diagrams is strong, as it allows for a simple visual presentation of what would otherwise be a rather arcane and abstract formula. In particular, part of the appeal is that the outgoing legs of a Feynman diagram can be associated with real, on-shell particles. Thus, it is natural to associate the other lines in the diagram with particles as well, called the "virtual particles". Mathematically, they correspond to the propagators appearing in the diagram.

In the image to the right, the solid lines correspond to real particles (of momentum p1 and so on), while the dotted line corresponds to a virtual particle carrying momentum k. For example, if the solid lines were to correspond to electrons interacting by means of the electromagnetic interaction, the dotted line would correspond to the exchange of a virtual photon. In the case of interacting nucleons, the dotted line would be a virtual pion. In the case of quarks interacting by means of the strong force, the dotted line would be a virtual gluon, and so on.

One-loop diagram with fermion propagator

It is sometimes said that all photons are virtual photons.[2][3] This is because the world-lines of photons always resemble the dotted line in the above Feynman diagram: the photon was emitted somewhere (say, a distant star), and then is absorbed somewhere else (say a photoreceptor cell in the eyeball). Furthermore, in a vacuum, a photon experiences no passage of (proper) time between emission and absorption. This statement illustrates the difficulty of trying to distinguish between "real" and "virtual" particles as mathematically they are the same objects and it is only our definition of "reality" which is weak here. In practice, a clear distinction can be made: real photons are detected as individual particles in particle detectors, whereas virtual photons are not directly detected; only their average or side-effects may be noticed, in the form of forces or (in modern language) interactions between particles.

Virtual particles need not be mesons or vector bosons, as in the example above; they may also be fermions. However, in order to preserve quantum numbers, most simple diagrams involving fermion exchange are prohibited. The image to the right shows an allowed diagram, a one-loop diagram. The solid lines correspond to a fermion propagator, the wavy lines to bosons.

Virtual particles in vacuums

Formally, a particle is considered to be an eigenstate of the particle number operator a^\dagger a where \!a is the particle annihilation operator and a^\dagger the particle creation operator (sometimes collectively called ladder operators). In many cases, the particle number operator does not commute with the Hamiltonian for the system. This implies the number of particles in an area of space is not a well-defined quantity but like other quantum observables is represented by a probability distribution. Since these particles do not have a permanent existence, they are called virtual particles or vacuum fluctuations of vacuum energy.[4] In a certain sense, they can be understood to be a manifestation of the time-energy uncertainty principle in a vacuum[5][6].

An important example of the "presence" of virtual particles in a vacuum is the Casimir effect.[7][8] Here, the explanation of the effect requires that the total energy of all of the virtual particles in a vacuum can be added together. Thus, although the virtual particles themselves are not directly observable in the laboratory, they do leave an observable effect: their zero-point energy[9] results in forces acting on suitably arranged metal plates or dielectrics.

Pair production

In order to conserve the total fermion number of the universe, a fermion cannot be created without also creating its antiparticle; thus many physical processes lead to pair creation. The need for the normal ordering of particle fields in the vacuum can be interpreted by the idea that a pair of virtual particles may briefly "pop into existence", and then annihilate each other a short while later.

Thus, virtual particles are often popularly described as coming in pairs, a particle and antiparticle, which can be of any kind. These pairs exist for an extremely short time, and mutually annihilate in short order. In some cases, however, it is possible to boost the pair apart using external energy so that they avoid annihilation and become real particles.

This may occur in one of two ways. In an accelerating frame of reference, the virtual particles may appear to be real to the accelerating observer; this is known as the Unruh effect. In short, the vacuum of a stationary frame appears, to the accelerated observer, to be a warm gas of real particles in thermodynamic equilibrium. The Unruh effect is a toy model for understanding Hawking radiation, the process by which black holes evaporate.

Another example is pair production in very strong electric fields, sometimes called vacuum decay. If, for example, a pair of atomic nuclei are merged together to very briefly form a nucleus with a charge greater than about 140, (that is, larger than about the inverse of the fine structure constant), the strength of the electric field will be such that it will be energetically favorable to create positron-electron pairs out of the vacuum or Dirac sea, with the electron attracted to the nucleus to annihilate the positive charge. This pair-creation amplitude was first calculated by Julian Schwinger in 1951.

The restriction to particle-antiparticle pairs is actually only necessary if the particles in question carry a conserved quantity, such as electric charge, which is not present in the initial or final state. Otherwise, other situations can arise. For instance, the beta decay of a neutron can happen through the emission of a single virtual, negatively charged W particle that almost immediately decays into a real electron and antineutrino; the neutron turns into a proton when it emits the W particle. The evaporation of a black hole is a process dominated by photons, which are their own antiparticles and are uncharged.

It is sometimes suggested that pair production can be used to explain the origin of matter in the universe. In models of the Big Bang, it is suggested that vacuum fluctuations, or virtual particles, briefly appear.[10] Then, due to effects such as CP-violation, an imbalance between the number of virtual particles and antiparticles is created, leaving a surfeit of particles, thus accounting for the visible matter in the universe.

See also


  1. ^ see Dirac Equation#Dirac's coup
  2. ^ Matt McIrvin(1994)"Some Frequently Asked Questions About Virtual Particles"
  3. ^ Takaaki Musha"Cherenkov Radiation from Faster-Than-Light Photons Created in a ZPF Background"
  4. ^ Alex Kaivarainen and Bo Lehnert(2005)"Two Extended New Approaches to Vacuum, Matter & Fields"
  5. ^ Larry Gilman"Virtual Particles"
  6. ^ David Raymond(2006)"Virtual Particles"
  7. ^ Pete Edwards(University of Durham)"Virtual Particles"
  8. ^ Carlos Calvet"Virtual Particles and Fields of Force"
  9. ^ Barry Setterfield(2002)"Exploring The Vacuum"
  10. ^ Leonid Marochnik,Daniel Usikov and Grigory Vereshkov(2007)"Cosmological Acceleration from Virtual Gravitons"

External links


Study guide

Up to date as of January 14, 2010

From Wikiversity

Crystal Clear app kaddressbook.png
Please help develop this page

This page was created, but so far, little content has been added. Everyone is invited to help expand and create educational content for Wikiversity. If you need help learning how to add content, see the editing tutorial and the MediaWiki syntax reference.

To help you get started with content, we have automatically added references below to other Wikimedia Foundation projects. This will help you find materials such as information, media and quotations on which to base the development of "Virtual particle" as an educational resource. However, please do not simply copy-and-paste large chunks from other projects. You can also use the links in the blue box to help you classify this page by subject, educational level and resource type.

Wikipedia-logo.png Run a search on Virtual particle at Wikipedia.
Commons-logo.svg Search Wikimedia Commons for images, sounds and other media related to: Virtual particle
Wikimedia-logo.svg Search for Virtual particle on the following projects:
Smiley green alien whatface.svg Lost on Wikiversity? Please help by choosing project boxes to classify this resource by:
  • subject
  • educational level
  • resource type


w:Virtual particle

See also

Vacuum energy


Got something to say? Make a comment.
Your name
Your email address