The Full Wiki

map: Wikis

Advertisements

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Encyclopedia

A map is a visual representation of an area—a symbolic depiction highlighting relationships between elements of that space such as objects, regions, and themes.

Many maps are static two-dimensional, geometrically accurate (or approximately accurate) representations of three-dimensional space, while others are dynamic or interactive, even three-dimensional. Although most commonly used to depict geography, maps may represent any space, real or imagined, without regard to context or scale; e.g. Brain mapping, DNA mapping, and extraterrestrial mapping.

Contents

Geographic maps

.]]

Cartography, or map-making is the study, and often practice of crafting representations of the Earth upon a flat surface (see History of cartography), and one who makes maps is called a cartographer.

Road maps are perhaps the most widely used maps today, and form a subset of navigational maps, which also include aeronautical and nautical charts, railroad network maps, and hiking and bicycling maps. In terms of quantity, the largest number of drawn map sheets is probably made up by local surveys, carried out by municipalities, utilities, tax assessors, emergency services providers, and other local agencies. Many national surveying projects have been carried out by the military, such as the British Ordnance Survey (now a civilian government agency internationally renowned for its comprehensively detailed work).

In addition to location information maps may also be used to portray contour lines (isolines) indicating constant values of elevation, temperature, rainfall etc.

Advertisements

Orientation of maps

, about 1300, Hereford Cathedral, England. A classic "T-O" map with Jerusalem at centre, east toward the top, Europe the bottom left and Africa on the right.]]

The term orientation refers to the relationship between directions on a map and compass directions. The word orient is derived from oriens, meaning east. In the Middle Ages many maps, including the T and O maps, were drawn with east at the top. Today the most common, but far from universal, cartographic convention is that North is at the top of a map. Examples of maps not oriented to north are:

  • Buckminster Fuller's Dymaxion maps are based on a projection of the Earth's sphere onto an icosahedron. The resulting triangular pieces may be arranged in any order or orientation.
  • Many maps used in the Society for Creative Anachronism show the west at the top, in honour of the Society starting in California.[citation needed]
  • Maps from non-Western traditions are oriented a variety of ways. Old maps of Edo show the Japanese imperial palace as the "top", but also at the centre, of the map. Labels on the map are oriented in such a way that you cannot read them properly unless you put the imperial palace above your head.[citation needed]
  • Medieval European T and O maps such as the Hereford Mappa Mundi were centred on Jerusalem with east at the top. Indeed, prior to the reintroduction of Ptolemy's Geography to Europe around 1400, there was no single convention in the West. Portolan charts, for example, are oriented to the shores they describe.
  • Polar maps of the Arctic or Antarctic regions are conventionally centred on the pole, in which case the direction north would be towards or away from the centre of the map, respectively.
  • Reversed maps, also known as Upside-Down maps or South-Up maps, which generally show Australia and New Zealand at the top of the map instead of the bottom.
  • Route and channel maps have traditionally been oriented to the road or waterway they describe.

Scale and accuracy

Many, but not all, maps are drawn to a scale, expressed as a ratio such as 1:10,000, meaning that 1 of any unit of measurement on the map corresponds exactly, or approximately, to 10,000 of that same unit on the ground. The scale statement may be taken as exact when the region mapped is small enough for the curvature of the Earth to be neglected, for example in a town planner's city map. Over larger regions where the curvature cannot be ignored we must use map projections from the curved surface of the Earth (sphere or ellipsoid) to the plane. The impossibility of flattening the sphere to the plane implies that no map projection can have constant scale: on most projections the best we can achieve is accurate scale on one or two lines (not necessarily straight) on the projection. Thus for map projections we must introduce the concept of point scale, which is a function of position, and strive to keep its variation within narrow bounds. Although the scale statement is nominal it is usually accurate enough for all but the most precise of measurements.

Large scale maps, say 1:10,000, cover relatively small regions in great detail and small scale maps, say 1:10,000,000, cover large regions such as nations, continents and the whole globe. The large/small terminology arose from the practice of writing scales as numerical fractions: 1/10000 is larger than 1/10000000. There is no exact dividing line between large and small but 1/100000 might well be considered as a medium scale. Examples of large scale maps are the 1:25000 maps produced for hikers; on the other hand maps intended for motorists at 1:250,000 or 1:1,000,000 are small scale.

It is important to recognize that even the most accurate maps sacrifice a certain amount of accuracy in scale to deliver a greater visual usefulness to its user. For example the width of roads and small streams are exaggerated when they are too narrow to be shown on the map at true scale; that is, on a printed map they would be narrower than could be perceived by the naked eye. The same applies to computer maps where the smallest unit is the pixel. A narrow stream say must be shown to have the width of a pixel even if at the map scale it would be a small fraction of the pixel width.

distorted to show population distributions.]] Sometimes the scale of a map is distorted deliberately. For example the map of Europe shown here has been distorted to show population distributions. Clearly the basic scale is approximately uniform for the rough shape of the continent is still visible. This is an example of a cartogram. 

Another example of distorted scale is the famous London Underground map. The basic geographical structure is respected but the tube lines (and the River Thames) are smoothed to clarify the relationships between stations. Near the centre of the map stations are spaced out more than near the edges of map.

Further inaccuracies may be deliberate. For example cartographers may simply omit military installations or remove features solely in order to enhance the clarity of the map. For example, a road map may or may not show railroads, smaller waterways or other prominent non-road objects, and even if it does, it may show them less clearly (e.g. dashed or dotted lines/outlines) than the highways. Known as decluttering, the practice makes the subject matter that the user is interested in easier to read, usually without sacrificing overall accuracy. Software-based maps often allow the user to toggle decluttering between ON, OFF and AUTO as needed. In AUTO the degree of decluttering is adjusted as the user changes the scale being displayed.

World maps and projections

)]]

Maps of the world or large areas are often either 'political' or 'physical'. The most important purpose of the political map is to show territorial borders; the purpose of the physical is to show features of geography such as mountains, soil type or land use. Geological maps show not only the physical surface, but characteristics of the underlying rock, fault lines, and subsurface structures.

Maps that depict the surface of the Earth also use a projection, a way of translating the three-dimensional real surface of the geoid to a two-dimensional picture. Perhaps the best-known world-map projection is the Mercator projection, originally designed as a form of nautical chart.

Airplane pilots use aeronautical charts based on a Lambert conformal conic projection, in which a cone is laid over the section of the earth to be mapped. The cone intersects the sphere (the earth) at one or two parallels which are chosen as standard lines. This allows the pilots to plot a great-circle route approximation on a flat, two-dimensional chart.

  • Azimuthal or Gnomonic map projections are often used in planning air routes due to their ability to represent great circles as straight lines.
  • Richard Edes Harrison produced a striking series of maps during and after World War II for Fortune magazine. These used "bird's eye" projections to emphasize globally strategic "fronts" in the air age, pointing out proximities and barriers not apparent on a conventional rectangular projection of the world.

Electronic maps

digital raster graphic.]]

From the last quarter of the 20th century, the indispensable tool of the cartographer has been the computer. Much of cartography, especially at the data-gathering survey level, has been subsumed by Geographic Information Systems (GIS). The functionality of maps has been greatly advanced by technology simplifying the superimposition of spatially located variables onto existing geographical maps. Having local information such as rainfall level, distribution of wildlife, or demographic data integrated within the map allows more efficient analysis and better decision making. In the pre-electronic age such superimposition of data led Dr. John Snow to discover the cause of cholera. Today, it is used by agencies as diverse as wildlife conservationists and militaries around the world.

Even when GIS is not involved, most cartographers now use a variety of computer graphics programs to generate new maps.

Interactive, computerised maps are commercially available, allowing users to zoom in or zoom out (respectively meaning to increase or decrease the scale), sometimes by replacing one map with another of different scale, centred where possible on the same point. In-car global navigation satellite systems are computerised maps with route-planning and advice facilities which monitor the user's position with the help of satellites. From the computer scientist's point of view, zooming in entails one or a combination of:

  1. replacing the map by a more detailed one
  2. enlarging the same map without enlarging the pixels, hence showing more detail by removing less information compared to the less detailed version
  3. enlarging the same map with the pixels enlarged (replaced by rectangles of pixels); no additional detail is shown, but, depending on the quality of one's vision, possibly more detail can be seen; if a computer display does not show adjacent pixels really separate, but overlapping instead (this does not apply for an LCD, but may apply for a cathode ray tube), then replacing a pixel by a rectangle of pixels does show more detail. A variation of this method is interpolation.

For example:

  • Typically (2) applies to a Portable Document Format (PDF) file or other format based on vector graphics. The increase in detail is, of course, limited to the information contained in the file: enlargement of a curve may eventually result in a series of standard geometric figures such as straight lines, arcs of circles or splines.
  • (2) may apply to text and (3) to the outline of a map feature such as a forest or building.
  • (1) may apply to the text (displaying labels for more features), while (2) applies to the rest of the image. Text is not necessarily enlarged when zooming in. Similarly, a road represented by a double line may or may not become wider when one zooms in.
  • The map may also have layers which are partly raster graphics and partly vector graphics. For a single raster graphics image (2) applies until the pixels in the image file correspond to the pixels of the display, thereafter (3) applies.

See also Webpage (Graphics), PDF (Layers), MapQuest, Google Maps, Google Earth, OpenStreetMap or Yahoo! Maps.

Labeling

To communicate spatial information effectively, features such as rivers, lakes, and cities need to be labeled. Over centuries cartographers have developed the art of placing names on even the densest of maps. Text placement or name placement can get mathematically very complex as the number of labels and map density increases. Therefore, text placement is time-consuming and labor-intensive, so cartographers and GIS users have developed automatic label placement to ease this process.[1][2]

Non geographical spatial maps

Maps exist of the solar system, and other cosmological features such as star maps. In addition maps of other bodies such as the Moon and other planets are technically not geological maps.

Non spatial maps

Many diagrams such as Gantt charts display logical relationships between items, and do not display spatial relationships at all.

Many maps are topological in nature, and the distances are completely unimportant, and only the connectivity is significant.

Footnotes

  1. ^ Imhof, E., “Die Anordnung der Namen in der Karte,” Annuaire International de Cartographie II, Orell-Füssli Verlag, Zürich, 93-129, 1962.
  2. ^ Freeman, H.,, Map data processing and the annotation problem, Proc. 3rd Scandinavian Conf. on Image Analysis, Chartwell-Bratt Ltd. Copenhagen, 1983.

References

  • David Buisseret, ed., Monarchs, Ministers and Maps: The Emergence of Cartography as a Tool of Government in Early Modern Europe. Chicago: University of Chicago Press, 1992, ISBN 0-226-07987-2
  • Denis E. Cosgrove (ed.) Mappings. Reaktion Books, 1999 ISBN 1-86189-021-4
  • Freeman, Herbert, Automated Cartographic Text Placement. White paper.
  • Ahn, J. and Freeman, H., “A program for automatic name placement,” Proc. AUTO-CARTO 6, Ottawa, 1983. 444-455.
  • Freeman, H., “Computer Name Placement,” ch. 29, in Geographical Information Systems, 1, D.J. Maguire, M.F. Goodchild, and D.W. Rhind, John Wiley, New York, 1991, 449-460.
  • Mark Monmonier, How to Lie with Maps, ISBN 0-226-53421-9
  • O'Connor, J.J. and E.F. Robertson, The History of Cartography. Scotland : St. Andrews University, 2002.

See also

[[Image:|65x28px]] Atlas portal
General
Map design and types
Modern maps
Map history
Related Topics

External links

  • Wikipedia:WikiProject Maps, use of maps on Wikipedia


Wiktionary

Up to date as of January 15, 2010

Definition from Wiktionary, a free dictionary

Contents

English

Wikipedia-logo.png
Wikipedia has an article on:

Wikipedia

A map of the world.

Etymology

Latin mappa “napkin, signal cloth”, via Old French mapemonde “map of the world”.

Pronunciation

Noun

Singular
map

Plural
maps

map (plural maps)

  1. A visual representation of an area, whether real or imaginary.
  2. (mathematics) A function.
    The discrete topology is always continuous, therefore functions with discrete domains are always maps.
  3. (topology) A continuous function.
  4. A diagram of components of an item.
  5. The butterfly Araschnia levana.

Synonyms

Derived terms

Related terms

Translations

Verb

Infinitive
to map

Third person singular
maps

Simple past
mapped

Past participle
mapped

Present participle
mapping

to map (third-person singular simple present maps, present participle mapping, simple past and past participle mapped)

  1. To create a visual representation of a territory, etc. via cartography.
  2. To inform someone of a particular idea.
  3. (mathematics, transitive) To act as a function on.
    f maps A to B, mapping a\in A to b\in B.
  4. (topology, transitive) To act as a continuous function on.
    The discrete topology is always continuous, therefore functions with discrete domains are always mappings.

Derived terms

Translations

Anagrams


Dutch

Noun

map f. (plural mappen, diminutive mapje, diminutive plural mapjes)

  1. folder
  2. (computing) directory, folder

Scottish Gaelic

Noun

map m., pl. mapaichean

  1. map (visual representation of an area)

Synonyms


Simple English

, Chile.]] A map is an image of an area, usually of the Earth or part of the Earth. A map is different from an aerial photograph because it includes interpretation.

The word "map" can also be used to talk about a chart or drawing that shows relationships between ideas, people, events, or anything else you can think about. This is why web developers call a list of web pages on a web site a site map.

People who make the maps are cartographers.

Many maps today are made using GIS computer systems. These are database systems that organized by things on a map instead of named records.

If a map is on a piece of paper or a computer screen, it has to be projected. This is because the Earth is round and paper and screens are flat. There are a lot of ways that use mathematics to make projections. The only kind of map of the Earth that is not projected is one drawn on a sphere. This is called a globe.


Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message