This article contains special characters that may not render correctly in some versions of some browsers. Without proper rendering support, you may see empty boxes instead of Unicode. 
showing
A is a subset of B and conversely B is a superset of A]]
In mathematics, especially in set theory, a set A is a subset of a set B if A is "contained" inside B. Notice that A and B may coincide. The relationship of one set being a subset of another is called inclusion.
Contents 
If A and B are sets and every element of A is also an element of B, then:
If A is a subset of B, but A is not equal to B (i.e. there exists at least one element of B not contained in A), then
For any set S, the inclusion relation ⊆ is a partial order on the set 2^{S} of all subsets of S (the power set of S).
Some authors use the symbols ⊂ and ⊃ to indicate "subset" and "superset" respectively, instead of the symbols ⊆ and ⊇, but with the same meaning. So for example, for these authors, it is true of every set A that A ⊂ A.
Other authors prefer to use the symbols ⊂ and ⊃ to indicate proper subset and superset, respectively, in place of $\backslash subsetneq$ and $\backslash supsetneq.$ This usage makes ⊆ and ⊂ analogous to ≤ and <. For example, if x ≤ y then x may be equal to y, or maybe not, but if x < y, then x definitely does not equal y, but is strictly less than y. Similarly, using the "⊂ means proper subset" convention, if A ⊆ B, then A may or may not be equal to B, but if A ⊂ B, then A is definitely not equal to B.
Inclusion is the canonical partial order in the sense that every partially ordered set (X, $\backslash preceq$) is isomorphic to some collection of sets ordered by inclusion. The ordinal numbers are a simple example—if each ordinal n is identified with the set [n] of all ordinals less than or equal to n, then a ≤ b if and only if [a] ⊆ [b].
For the power set 2^{S} of a set S, the inclusion partial order is (up to an order isomorphism) the Cartesian product of k = S (the cardinality of S) copies of the partial order on {0,1} for which 0 < 1. This can be illustrated by enumerating S = {s_{1}, s_{2}, …, s_{k}} and associating with each subset T ⊆ S (which is to say with each element of 2^{S}) the ktuple from {0,1}^{k} of which the ith coordinate is 1 if and only if s_{i} is a member of T.
Contents 
Singular 
Plural 
subset (plural subsets)

A subset is a set which has some (or all) of the elements of another set, called superset, but does not have any elements that the superset does not have. A subset which does not have all the elements of its superset is called a proper subset. We use the symbol ⊆ to say a set is a subset of another set. We can also use ⊂ if it is a proper subset. The symbols ⊃ ⊇ are opposite  they tell us the second element is a (proper) subset of the first.
Examples:
